ПРИКЛАДНАЯ МАТЕМАТИКА И МЕТОДЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

УДК 528.856.044.1

Р.И. Шувалов

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ФОРМИРОВАНИЯ ТОПОГРАФИЧЕСКОЙ ИНТЕРФЕРОГРАММЫ ПОВЕРХНОСТИ ЗЕМЛИ ПО ДАННЫМ СЪЕМОК КОСМИЧЕСКОГО РАДИОЛОКАТОРА С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕННЫ

Рассмотрена математическая модель формирования топографической интерферограммы поверхности Земли по данным съемок радиолокатора с синтезированной апертурой антенны с околоземной орбиты. Получены соотношения, связывающие локальные углы наклона топографического рельефа с локальными углами наклона фазового рельефа на интерферограмме, которые необходимы для повышения точности построения цифровых моделей рельефа Земли методом космической радиолокационной топографической интерферометрии.

E-mail: Shuvalov.R.BMSTU@mail.ru

Ключевые слова: радиолокатор, синтезированная апертура, топография, радиолокационная интерферометрия, топографическая интерферограмма.

Одним из важных приложений данных съемок радиолокатора с синтезированной апертурой антенны (РСА), устанавливаемого на борту космического аппарата, является построение цифровых моделей рельефа (ЦМР) поверхности Земли. Являясь активным и когерентным датчиком, РСА способен выполнять интерферометрические измерения. Интерферометрический метод измерений основан на использовании эффекта интерференции волн и состоит в сравнении мало отличающихся друг от друга волновых фронтов [1]. Потенциальная точность метода составляет несколько долей используемой длины волны и, как правило, превышает точность других методов измерений. Интерферометрический метод получения ЦМР подстилающей поверхности по данным РСА состоит в формировании топографической интерферограммы по результатам совместной обработки данных двух радиолокационных съемок и извлечении из нее топографической информации [2-5]. Метод аналогичен известному в экспериментальной механике методу смещенного источника [1].

Получаемая топографическая интерферограмма поверхности Земли искажена действием фазового шума и, в силу геометрии съемки, может содержать области неоднозначности и области отсутствия адекватной фазы. Для успешного извлечения из такой интерферограммы топографической информации необходима соответствующая математическая модель. В настоящей работе рассматривается математическая модель формирования топографической интерферограммы поверхности Земли по данным съемок РСА с околоземной орбиты. Цель работы — получение соотношений, связывающих локальные углы наклона топографического рельефа с углами наклона фазового рельефа на интерферограмме. Под фазовым рельефом понимается поверхность, изображающая зависимость фазы от пространственных координат.

Формирование топографической интерферограммы. Радиолокационная съемка заключается в облучении подстилающей поверхности радиоимпульсами и измерении амплитуды и фазы вернувшегося к радиолокатору отраженного электромагнитного сигнала. Зарегистрированный сигнал от различных точек подстилающей поверхности проходит специальную обработку, и формируется матрица комплексных величин — цифровое радиолокационное изображение (РЛИ) подстилающей поверхности

$$I = \{i_{mn}\}, \quad m = 1, \dots, M, \quad n = 1, \dots, N;$$

РЛИ формируется в системе координат "азимут-наклонная дальность", индексы m и n определяют положение точки на оси азимута и на оси наклонной дальности соответственно. Ось азимута совпадает с направлением орбитального движения РСА. Положение образа элемента подстилающей поверхности на оси наклонной дальности определяется фактической дальностью от РСА до этого элемента на момент его траверса. Два изображения одного и того же участка подстилающей поверхности, полученные под различными углами наблюдения при определенных ограничениях на геометрию съемки, образуют интерферометрическую пару. Полученные по результатам съемки снимки I₁ и I₂ интерферометрической пары пространственно совмещаются, т.е. между точками снимков устанавливается взаимнооднозначное соответствие, при котором каждая точка первого снимка и соответствующая ей точка второго снимка отвечают одной и той же точке подстилающей поверхности. Для двух комплексных значений радиолокационного сигнала, соответствующих одной и той же точке подстилающей поверхности, определяется комплексная корреляционная функция [5]

$$C\left(i_{1}, i_{2}\right) = \frac{\mathrm{E}\left[i_{1} \ i_{2}^{*}\right]}{\sqrt{\mathrm{E}\left[\left|i_{1}\right|^{2}\right] \cdot \mathrm{E}\left[\left|i_{2}\right|^{2}\right]}},$$

где i_1 , i_2 — комплексные значения в соответственных точках РЛИ интерферометрической пары; $E[\cdot]$ — оператор математического ожидания по множеству элементарных отражателей внутри соответствующей ячейки пространственного разрешения РСА на подстилающей

поверхности. Фаза $\varphi = \arg[C]$ и амплитуда $\rho = |C|$ комплексной корреляционной функции в точке называются интерферометрической фазой и когерентностью. Двумерный массив $\vec{\Phi} = \{\varphi_{mn}\}$ значений интерферометрической фазы называется интерферограммой, а двумерный массив $\vec{P} = \{\rho_{mn}\}$ значений когерентности — матрицей когерентности.

Математическая модель формирования интерферограммы. Математическая модель формирования топографической интерферограммы включает в себя систему алгебраических уравнений, связывающую топографическую информацию, параметры съемки и фазовую информацию, а также модель искажающего действия фазового шума. Система уравнений, в предположении сферичности Земли, имеет следующий вид (рис. 1, *a*):

$$\psi = \frac{4\pi}{\lambda} \left(r_2 - r_1 \right); \tag{1}$$

$$r_2^2 = r_1^2 + B^2 + 2r_1 B \sin(\alpha - \gamma); \qquad (2)$$

$$\gamma = \arccos \frac{(R+H)^2 + r_1^2 - (R+h)^2}{2(R+H)r_1},$$
(3)

где ψ — абсолютная интерферометрическая фаза, соответствующая данной точке на интерферограмме; r_1 и r_2 — наклонные дальности,

Рис. 1. Геометрическая модель интерферометрических измерений:

a — измерения в плоскости, перпендикулярной оси азимута; первая съемка точки P проводится из положения S_1 , вторая — из положения S_2 (Земля предполагается сферической); δ — связь приращения наклонной дальности Δr_1 с приращением наземной дальности Δr_G при ненулевом угле наклона рельефа $\alpha_X \neq 0$ (фронт волны предполагается плоским)

соответствующие данной точке на момент первой и второй съемок; λ — рабочая длина волны РСА; B — длина базовой линии; α — угол ориентации базовой линии; γ — угол наблюдения, соответствующий первой съемке; R — радиус Земли; H — высота РСА на момент первой съемки; h — высота рельефа в данной точке. При фиксированных значениях параметров съемки (т.е. R, H, B, α), согласно системе уравнений (1)–(3), абсолютная интерферометрическая фаза ψ является функцией наклонной дальности r_1 и высоты рельефа h:

$$\psi = \psi \left(r_1, h \right). \tag{4}$$

Зависимость (4) — нелинейная и может быть получена в явном виде путем подстановки (3) в (2) и (2) в (1). Линеаризация зависимости (4) в окрестности точки $(r_0, 0)$ приводит к выражению

$$\psi(r_1, h) \approx \psi(r_0, 0) + \frac{\partial \psi}{\partial r_1}(r_1 - r_0) + \frac{\partial \psi}{\partial h}h,$$
(5)

где r_0 — наклонная дальность до центра кадра.

Формулу (5) перепишем в виде

$$\psi(r_1, h) \approx \psi_0 + \psi_R + \psi_T, \tag{6}$$

где

$$\psi_0 = \psi(r_0, 0), \quad \psi_R = \frac{\partial \psi}{\partial r_1}(r_1 - r_0), \quad \psi_T = \frac{\partial \psi}{\partial h}h.$$

Первая компонента (ψ_0) — постоянная по полю интерферограммы и полезной информации не несет. Вторая компонента (ψ_R) описывает изменения наклонной дальности по полю кадра. Третья компонента — топографическая фаза $\psi_{\rm T}$ — описывает изменения высоты рельефа по полю кадра. Операция компенсации ψ_R называется устранением набега фазы по направлению наклонной дальности. Вычислим производные, входящие в формулу (5). Дифференцируя (1) с учетом (2) и (3), находим

$$\frac{\partial \psi}{\partial r_1} = \frac{4\pi}{\lambda} \frac{r_1 - r_2 + B\sin\left(\alpha - \gamma\right)}{r_2};\tag{7}$$

$$\frac{\partial \psi}{\partial h} = -\frac{4\pi}{\lambda} \frac{B_{\perp}}{r_2} \frac{R+h}{R+H} \frac{1}{\sqrt{1 - \left(\frac{(R+H)^2 + r_1^2 - (R+h)^2}{2(R+H)r_1}\right)^2}},$$
(8)

где $B_{\perp} = B \cos{(\alpha - \gamma)}.$

Пусть γ_0 — угол наблюдения, соответствующий центру кадра. Для характерных значений параметров космической съемки РСА справедливы соотношения: $h \ll R$, $H \ll R$, $r_1 \gg B$, $r_2 \gg B$ и, как следствие,

приближенные равенства $\frac{R+h}{R+H} \approx 1, r_2 \approx r_1 \approx r_0$, которые позволяют упростить формулу (8):

$$\frac{\partial \psi}{\partial h} \cong -\frac{4\pi}{\lambda} \frac{B_{\perp}}{r_0 \sin \gamma_0}.$$
(9)

Отметим, что знак производной $\frac{\partial \psi}{\partial h}$ определяется знаком величины B_{\perp} (формула (8)), который, в свою очередь, определяется величиной угла $\chi = \alpha - \gamma$. Это обстоятельство учитывается при вычислении топографической интерферограммы, для которой обычно выполняется неравенство $\frac{\partial \psi_T}{\partial h} > 0$. Поэтому

$$d\psi_T = \frac{4\pi}{\lambda} \frac{|B_\perp|}{r_0 \sin \gamma_0} dh.$$
⁽¹⁰⁾

Пусть заданы цифровая топографическая интерферограмма $\Psi = \{\psi_{mn}\}$ (массив абсолютных значений фазы) в системе координат "азимут-наклонная дальность" и ЦМР $H = \{h_{mn}\}$ в системе координат "азимут-наземная дальность". Наземная дальность — это расстояние от подспутниковой точки, измеряемое вдоль проекции направления наклонной дальности на поверхность Земли. Углом наклона фазового рельефа по направлению наклонной дальности будем называть величину $\beta_X = \arctan \frac{\psi_{m,n+1} - \psi_{mn}}{n+1-n}$, углом наклона фазового рельефа по направлению азимута величину $\beta_Y = \arctan \frac{\psi_{m+1,n} - \psi_{mn}}{m+1-m}$, углом наклона топографического рельефа по направлению азимута величину $\beta_Y = \arctan \frac{\psi_{m+1,n} - \psi_{mn}}{m+1-m}$, углом наклона топографического рельефа по направлению азимута величину $\alpha_Y = \arctan \frac{h_{m+1,n} - h_{mn}}{\Delta a}$. Здесь Δr_G и Δa – размеры пикселя снимка по направления наземной дальности и азимута соответственно. Найдем соотношения, связывающие углы наклона фазового рельефа с углами наклона топографического рельефа. Из (10) имеем

$$\operatorname{tg}\beta_X = \frac{4\pi}{\lambda} \frac{|B_{\perp}| \,\Delta r_S}{r_0 \sin \gamma_0} \operatorname{tg} \alpha_X \frac{dr_G}{dr_1},\tag{11}$$

где $\Delta r_S = \Delta r_1$ — размер пикселя снимка по направлению наклонной дальности; r_G — наземная дальность, определяемая выражением $r_G = R\beta$ (см. рис. 1, *a*). Из рис. 1, *a* находим

$$r_1 = \sqrt{(R+H)^2 + (R+h)^2 - 2(R+H)(R+h)\cos\beta},$$
 (12)

и после дифференцирования (12) имеем

$$\frac{dr_1}{dr_G} = \frac{(R+h)\frac{dh}{dr_G} - (R+H)\frac{dh}{dr_G}\cos\beta + (R+H)(R+h)\sin\beta\frac{d\beta}{dr_G}}{r_1}.$$
 (13)

Поскольку $r_G = R\beta$, то $\frac{d\beta}{dr_G} = \frac{1}{R}$. С учетом того, что для характерных значений параметров космической радиолокационной съемки $R \gg H$, $R \gg h$ и $\sin \beta \approx \beta$, $\cos \beta \approx 1$, формула (13) упрощается:

$$\frac{dr_1}{dr_G} = \frac{h - H}{r_1} \frac{dh}{dr_G} + \frac{r_G}{r_1}.$$
 (14)

Далее, поскольку $\frac{h-H}{r_1} \approx -\cos \gamma_0$, $\frac{r_G}{r_1} \approx \sin \gamma_0$ и $\frac{dh}{dr_G} = \operatorname{tg} \alpha_X$, формула (14) принимает вид

$$\frac{dr_1}{dr_G} = \frac{\sin\left(\gamma_0 - \alpha_X\right)}{\cos\alpha_X}.$$
(15)

Формула (15) имеет простую геометрическую интерпретацию (рис. 1, б). С учетом (15) формула (11) принимает следующий вид:

$$\operatorname{tg}\beta_X = \frac{4\pi}{\lambda} \frac{|B_{\perp}| \,\Delta r_1}{r_0 \sin \gamma_0} \frac{\sin \alpha_X}{\sin \left(\gamma_0 - \alpha_X\right)}, \quad \alpha_X \in \left(-\frac{\pi}{2}; \gamma\right).$$
(16)

Теперь найдем аналогичную формулу для направления азимута. Из соотношения (10) имеем

$$\frac{\partial \psi_T}{\partial a} = \frac{4\pi}{\lambda} \frac{|B_\perp|}{r_0 \sin \gamma_0} \frac{\partial h}{\partial a},\tag{17}$$

где a — азимутальная координата, отсчитываемая вдоль траектории движения PCA.

Для упрощения дальнейших выкладок будем исходить из геометрии обзора в предположении плоской поверхности Земли. Введем прямоугольную систему координат с началом в точке на поверхности Земли и осями: A — ось азимута, R_G — ось наземной дальности, Z ось высоты над поверхностью Земли (рис. 2, a).

Пусть радиолокатор движется прямолинейно и равномерно вдоль прямой, определяемой пересечением плоскостей z = H = const и $r_G = 0 = \text{const}$ (см. рис. 2, *a*). Пусть в фиксированный момент времени радиолокатор расположен в точке (a, 0, H) и точка подстилающей поверхности, расположенная на заданной наклонной дальности r_S , имеет координаты (a, r_G, h) . Предположим также, что соответствие точек подстилающей поверхности точкам снимка является

Рис. 2. Геометрия сканирования подстилающей поверхности в направлении полета РСА (*a*) и вспомогательные геометрические построения (б)

взаимно-однозначным. Тогда на подстилающей поверхности через каждую точку можно провести единственную линию равной наклонной дальности, которую PCA "вычерчивает", совершая азимутальное перемещение. Требуется найти приращение топографической фазы $\Delta \psi_T$, обусловленное приращением криволинейной координаты вдоль линии $r_1 = \text{const.}$ Зададим некоторую точку P на подстилающей поверхности и ее малую окрестность. Пусть P' — ортогональная проекция точки P, а кривая $r_G = r_G(a)$ — ортогональная проекция кривой равной наклонной дальности r_S = const на плоскость нулевой высоты z = 0 в соответствующей окрестности точки P'. Если окрестность достаточно мала, проекция кривой равной дальности будет описываться однозначной функцией $r_G = r_G(a)$. Найдем производную $\frac{\partial r_G}{\partial a}$ в точке P'. Из принятой геометрии обзора непосредственно следует

$$r_{S} = \sqrt{r_{G}^{2}(a) + (H - h(a, r_{G}(a)))^{2}}.$$
(18)

Условие постоянства наклонной дальности с изменением азимута (перемещением PCA) имеет вид

$$\frac{dr_S}{da} = 0. (19)$$

Дифференцируя соотношение (18), получаем

$$\frac{dr_S}{da} = \frac{r_G(a)\frac{\partial r_G(a)}{\partial a} - (H-h)\left(\frac{\partial h}{\partial a} + \frac{\partial h}{\partial r_G}\frac{\partial r_G}{\partial a}\right)}{r_S}.$$
 (20)

Подставляя (20) в (19), приходим к уравнению

$$\frac{1}{r_S}r_G\left(a\right)\frac{\partial r_G\left(a\right)}{\partial a} - \frac{H - h\left(a, r_G\left(a\right)\right)}{r_S}\left(\operatorname{tg}\alpha_Y + \operatorname{tg}\alpha_X\frac{\partial r_G\left(a\right)}{\partial a}\right) = 0.$$
(21)

Учитывая что $\frac{r_G}{r_S} = \sin \gamma_0$, $\frac{H-h}{r_S} = \cos \gamma_0$ (см. рис. 2, *a*), разрешая уравнение (21) относительно производной $\frac{\partial r_G}{\partial a}$, получаем

$$\frac{\partial r_G}{\partial a} = \frac{\cos \gamma_0 \cos \alpha_X \operatorname{tg} \alpha_Y}{\sin \left(\gamma_0 - \alpha_X\right)}.$$
(22)

Обозначив $\frac{\partial r_G}{\partial a} = \operatorname{tg} \xi$, из принятой геометрии обзора (рис. 2) можно записать

$$\frac{\partial h}{\partial a} = \operatorname{tg} \alpha_Y + \operatorname{tg} \xi \operatorname{tg} \alpha_X.$$
(23)

Подставив в формулу (23) выражение (22), имеем

$$\frac{\partial h}{\partial a} = \operatorname{tg} \alpha_Y \frac{\sin \gamma_0 \cos \alpha_X}{\sin (\gamma_0 - \alpha_X)}.$$
(24)

Подставляя (24) в (17), получим

$$\operatorname{tg} \beta_{Y} = \frac{4\pi}{\lambda} \frac{|B_{\perp}| \Delta a}{r_{0}} \frac{\operatorname{tg} \alpha_{Y} \cos \alpha_{X}}{\sin (\gamma_{0} - \alpha_{X})},$$

$$\alpha_{X} \in \left(-\frac{\pi}{2}; \gamma\right), \quad \alpha_{Y} \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right).$$
(25)

Формулы (16) и (25) связывают углы наклона фазового рельефа с углами наклона топографического рельефа (рис. 3). При стремлении угла наклона рельефа по направлению дальности к значению угла наблюдения ($\alpha_X \to \gamma$) наклон фазового рельефа по направлению дальности возрастает до бесконечности: $\Delta_{TX} = \text{tg}(\beta_X) \to +\infty$, а при убывании ($\alpha_X \to -\frac{\pi}{2}$) этот наклон имеет асимптотический предел $\Delta_{TX} = \Delta_{TX}^* = \text{tg}\beta_X^*$. При этом наклон фазового рельефа по направлению дальности зависит лишь от угла наклона рельефа в этом же направлении: $\Delta_{TX} = \Delta_{TX}(\alpha_X)$ (рис. 3, *a*).

Обращая формулы (16) и (25), получаем формулы обратного преобразования в виде

$$\operatorname{tg} \alpha_{X} = \frac{\lambda r_{0} \sin^{2} \gamma_{0} \operatorname{tg} \beta_{X}}{4\pi |B_{\perp}| \Delta r_{S} + \lambda r_{0} \sin \gamma_{0} \cos \gamma_{0} \operatorname{tg} \beta_{X}};$$
$$\operatorname{tg} \alpha_{Y} = \frac{\lambda r_{0} \Delta r_{S} \sin \gamma_{0} \operatorname{tg} \beta_{Y}}{4\pi |B_{\perp}| \Delta r_{S} \Delta a + \lambda r_{0} \Delta a \sin \gamma_{0} \cos \gamma_{0} \operatorname{tg} \beta_{X}};$$
$$\beta_{X} \in \left(\beta_{X}^{*}; \frac{\pi}{2}\right), \quad \beta_{Y} \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right),$$

Рис. 3. Зависимость физической фазовой разности по направлению наземной дальности $\Delta_{TX} = \operatorname{tg} \beta_X(a)$ и физической фазовой разности по направлению азимута $\Delta_{TY} = \operatorname{tg} \beta_Y$ от компонент топографического градиента $g_X = \operatorname{tg} \alpha_X$ и $g_Y = \operatorname{tg} \alpha_Y$ при параметрах съемки, характерных для PCA ERS-1: $r_0 = 853$ км, $\lambda = 5,7$ см, $\Delta r_S = 8$ м, $\Delta a = 4$ м, $\gamma_0 = 22^\circ$, $B_\perp = 150$ м

$$eta_X^* = rctg\left(-rac{4\pi}{\lambda}rac{|B_{\perp}|\,\Delta r_S}{r_0\sin\gamma_0\cos\gamma_0}
ight).$$

Наличие нижней границы β_X^* следует из условия непрерывности рельефа: $|\alpha_X| < \frac{\pi}{2}$.

Отметим, что в работе [6] аналогичные соотношения между мгновенными значениями пространственной частоты (instantaneous frequencies) интерферограммы по дальности и азимуту и локальными углами наклона рельефа в соответствующей точке получены другим способом. Они получены для интерферограммы, содержащей наряду с топографической фазой фазу наземной дальности, и переходят в формулы (16), (25) после компенсации частоты, обусловленной наземной дальностью, и соответствующей замены переменных.

Фазовый шум. Поскольку приемная аппаратура измеряет лишь главное значение фазы электромагнитного сигнала, наблюдаемая интерферометрическая фаза φ определена на отрезке длиной 2π радиан ($-\pi \leqslant \varphi < \pi$). Наблюдаемая фаза φ содержит составляющую φ_N фазового шума, обусловленного декорреляцией снимков интерферометрической пары, и полезную составляющую φ_T , представляющую собой главное значение абсолютной полезной фазы ψ_T . Модель взаимодействия полезной и шумовой составляющих фазы имеет вид [7]

$$\varphi = W \left[\varphi_T + \varphi_N \right], \quad \varphi_T = W \left[\psi_T \right]. \tag{26}$$

Здесь символом $W\left[\cdot
ight]$ обозначен оператор свертки по модулю 2π

Рис. 4. Плотность распределения вероятностей наблюдаемой интерферометрической фазы φ на отрезке $[-\pi;\pi)$ при значениях $\rho = 0,5, L = 4, \varphi_T = 0$

радиан, определяемый выражением [8]

$$W[\psi] = \arg \{ \exp \{ j\psi \} \}, \quad \psi \in \mathbb{R},$$

где j — мнимая единица. Фазовый шум предполагается некоррелированным с полезной составляющей фазы, а его математическое ожидание равным нулю [9, 10]. При этих допущениях плотность распределения (по реализациям в точке) наблюдаемой на интерферограмме фазы φ на отрезке [$-\pi$; π) имеет вид [9] (рис. 4)

$$p_{\Phi}\left(\varphi|\rho,\varphi_{T},L\right) = \frac{\Gamma\left(L+\frac{1}{2}\right)\left(1-\rho^{2}\right)^{L}\beta}{2\sqrt{\pi}\,\Gamma\left(L\right)\left(1-\beta^{2}\right)^{L+\frac{1}{2}}} + \frac{\left(1-\rho^{2}\right)^{L}}{2\pi}\cdot F\left(L,1;\frac{1}{2};\beta^{2}\right),$$
$$\beta = \rho\cos\left(\varphi-\varphi_{T}\right),$$
(27)

где φ_T — математическое ожидание фазы φ ; ρ — когерентность; L — число независимых наблюдений, $\Gamma(\cdot)$ — гамма-функция Эйлера, $F(\cdot)$ — гипергеометрическая функция Гаусса.

Плотность распределения вероятностей (27) наблюдаемой интерферометрической фазы является периодической функцией с периодом 2π радиан. Поэтому ее можно рассматривать как плотность распределения вероятностей абсолютной интерферометрической фазы ψ на отрезке [$\psi_T - \pi; \psi_T + \pi$], заменив аргумент $\varphi \in [-\pi; \pi)$ аргументом $\psi \in [\psi_T - \pi; \psi_T + \pi)$, а параметр φ_T параметром ψ_T . Среднеквадратическое отклонение $\sigma_{\Phi}(\rho, L)$ наблюдаемой фазы φ от действительного значения φ_T по определению выражается формулой (рис. 5)

$$\sigma_{\Phi}\left(\rho,L\right) = \left(\int_{-\pi}^{+\pi} \left(\varphi - \varphi_{0}\right)^{2} p_{\Phi}\left(\varphi|\rho,\varphi_{0},L\right) d\varphi\right)^{\frac{1}{2}}, \quad \varphi_{0} = 0.$$
(28)

Фазовые разности. Введем обозначения: δ — относительная фазовая разность; Δ – абсолютная фазовая разность; Δ_T — физическая фазовая разность; δ_N — шумовая фазовая разность. Введенные фазо-

Рис. 5. Зависимость среднеквадратического отклонения σ_{Φ} наблюдаемой интерферометрической фазы φ от когерентности ρ при разных значениях параметра накопления L

вые разности связаны между собой соотношениями

$$\delta = W[\Delta], \quad \Delta = \Delta_T + \delta_N;$$

 $\delta \in [-\pi;\pi), \ \delta_N \in (-2\pi;2\pi), \ \Delta_T \in \mathbb{R}, \ \Delta \in (\Delta_T - 2\pi;\Delta_T + 2\pi) \subset \mathbb{R}.$

Из четырех фазовых разностей непосредственно наблюдаемой является лишь относительная фазовая разность, представляющая собой конечную разность главного значения фазы, свернутую в интервал $[-\pi; \pi)$:

$$\delta_{Y}(m,n) = W\left[\varphi_{m+1,n} - \varphi_{mn}\right], \quad \delta_{X}(m,n) = W\left[\varphi_{m,n+1} - \varphi_{mn}\right].$$

Абсолютная фазовая разность Δ представляет собой сумму детерминированной компоненты Δ_T и случайной компоненты δ_N . Она является конечной разностью абсолютной фазы

$$\Delta_X(m,n) = \psi_{m,n+1} - \psi_{mn}, \quad \Delta_Y(m,n) = \psi_{m+1,n} - \psi_{mn}.$$

Физическая фазовая разность Δ_T является детерминированной функцией топографии подстилающей поверхности и параметров съемки. В приложениях именно она несет полезную информацию об объекте интерферометрических измерений. Интерферометрические измерения стремятся организовать так, чтобы физическая разность в каждой точке интерферограммы не превышала по модулю π радиан, но это удается не всегда. Шумовая фазовая разность δ_N является случайной величиной, закон распределения вероятностей которой не зависит от величины Δ_T . Рассмотрим теперь законы распределения вероятностей случайных величин Δ и δ . Конечные разности Δ_X и Δ_Y являются случайными величинами, распределенными на отрезках ($\Delta_{TX} - 2\pi; \Delta_{TX} + 2\pi$) и ($\Delta_{TY} - 2\pi; \Delta_{TY} + 2\pi$) соответственно. Плотности распределения вероятностей фазовых разностей на этих отрезках даются сверткой (рис. 6):

$$p_{\Delta X} \left(\Delta_{X} | \Delta_{TX} \right) = \begin{cases} \int_{-\pi - (\Delta_{X} - \Delta_{TX})}^{\pi} \tilde{p}_{\Phi} \left(\Delta_{X} - \Delta_{TX} + \varphi \right) \tilde{p}_{\Phi} \left(\varphi \right) d\varphi, \ \Delta_{X} \in \left(\Delta_{TX} - 2\pi; \Delta_{TX} \right); \\ \pi_{-(\Delta_{X} - \Delta_{TX})} \\ \int_{-\pi}^{\pi - (\Delta_{X} - \Delta_{TX})} \tilde{p}_{\Phi} \left(\Delta_{X} - \Delta_{TX} + \varphi \right) \tilde{p}_{\Phi} \left(\varphi \right) d\varphi, \ \Delta_{X} \in \left[\Delta_{TX}; \Delta_{TX} + 2\pi \right); \end{cases}$$

$$(29)$$

$$p_{\Delta Y} \left(\Delta_{Y} | \Delta_{TY} \right) = \begin{cases} \int_{-\pi - (\Delta_{Y} - \Delta_{TY})}^{\pi} \tilde{p}_{\Phi} \left(\Delta_{Y} - \Delta_{TY} + \varphi \right) \tilde{p}_{\Phi} \left(\varphi \right) d\varphi, \ \Delta_{Y} \in \left(\Delta_{TY} - 2\pi; \Delta_{TY} \right); \\ \pi_{-(\Delta_{Y} - \Delta_{TY})} \\ \int_{-\pi}^{\pi - (\Delta_{Y} - \Delta_{TY})} \tilde{p}_{\Phi} \left(\Delta_{Y} - \Delta_{TY} + \varphi \right) \tilde{p}_{\Phi} \left(\varphi \right) d\varphi, \ \Delta_{Y} \in \left[\Delta_{TY}; \Delta_{TY} + 2\pi \right). \end{cases}$$

$$(30)$$

Здесь введена вспомогательная функция $\tilde{p}_{\Phi}(\varphi) = p_{\Phi}(\varphi + \varphi_T)$ и использовано определение физической фазовой разности, как разности топографических абсолютных фаз:

$$\Delta_{TX}(m,n) = (\psi_T)_{m,n+1} - (\psi_T)_{mn}; \quad \Delta_{TY}(m,n) = (\psi_T)_{m+1,n} - (\psi_T)_{mn}$$

Плотности распределения вероятностей относительных фазовых разностей δ_X и δ_Y выражаются формулами (рис. 7)

$$p\left(\delta_{X}|\Delta_{TX}\right) = \begin{cases} \sum_{k=-\infty}^{+\infty} p_{\Delta X} \left(\delta_{X} + 2\pi k | \Delta_{TX}\right), \ \delta_{X} \in [-\pi;\pi];\\ 0, \ \delta_{X} \notin [-\pi;\pi], \end{cases}$$
(31)
$$p\left(\delta_{Y}|\Delta_{TY}\right) = \begin{cases} \sum_{k=-\infty}^{+\infty} p_{\Delta Y} \left(\delta_{Y} + 2\pi k | \Delta_{TY}\right), \ \delta_{Y} \in [-\pi;\pi];\\ 0, \ \delta_{Y} \notin [-\pi;\pi]. \end{cases}$$
(32)

Рис. 6. Плотность распределения вероятностей абсолютной фазовой разности Δ на отрезке $(-2\pi; 2\pi)$ при $\rho = 0,5, L = 4, \Delta_T = 0$

Рис. 7. Плотность распределения вероятностей относительной фазовой разности δ на отрезке ($-\pi;\pi$) при $\rho = 0,5, L = 4, \Delta_T = 0,5\pi$

Поскольку плотность распределения абсолютной фазовой разности $p_{\Delta}(\Delta|\Delta_T)$ отлична от нуля лишь на интервале $(\Delta_T - 2\pi; \Delta_T + 2\pi)$, то в формулах (31), (32) суммирование достаточно провести по конечному числу значений индекса k: от значения $k = k_{\min}$ до значения $k = k_{\max}$. Граничные значения определяются формулами

$$k_{\min} = \left[\frac{\Delta_T - \delta}{2\pi}\right], \quad k_{\max} = \left[\frac{\Delta_T - \delta}{2\pi}\right] + 1;$$

здесь $[\cdot]$ — оператор взятия целой части числа. Отметим, что в формулах (29)–(32) параметры ρ (когерентность) и L (число независимых наблюдений) для краткости записи опущены. Параметр Δ_T определяет положение максимума, а параметры ρ и L — дисперсию.

Заключение. Рассмотрена математическая модель формирования топографической интерферограммы поверхности Земли по данным съемок радиолокатора с синтезированной апертурой антенны из космоса. Исходя из геометрии съемки получены соотношения, связывающие локальные углы наклона топографического рельефа с фазовыми разностями на интерферограмме. Эти соотношения необходимы для вычисления совместного априорного распределения вероятностей фазовых разностей на основе априорного распределения вероятностей топографического градиента для включения радиометрической информации в постановку задачи обработки интерферограммы. Рассмотрено влияние на интерферограмму фазового шума. Получены формулы для распределений вероятностей основных видов фазовых разностей.

СПИСОК ЛИТЕРАТУРЫ

- 1. К о з а ч о к А. Г. Голографические методы исследования в экспериментальной механике. М.: Машиностроение, 1984.
- 2. G r a h a m L. C. Synthetic interferometric radar for topographic mapping // Proceedings of the IEEE. 1974. Vol. 62. P. 763–768.
- 3. Z e b k e r H. A., G o l d s t e i n R. M. Topographic mapping from interferometric SAR observations // J. Geophys. Res. 1986. Vol. 91. P. 4993–4999.
- B a m l e r R. Digital terrain models from radar interferometry // Photogrammetric week '1997. Wichmann Verlag, Heidelberg, 1997. – P. 93–105.
- 5. Rosen P., Hensley S., Joughin I., Li F., Madsen S., Rodriguez E., Goldstein R. Synthetic aperture radar interferometry // Proc. of the IEEE. - 2009. - Vol. 88. - No. 3.
- 6. Guarnieri A. M. SAR interferometry and statistical topography // IEEE Transactions on Geoscience and Remote Sensing. – 2002. – Vol. 40. – P. 2567– 2581.
- 7. D a t c u M. Maximum entropy solution for interferometric SAR phase unwrapping // Proc. of the IGARSS '96 Conference.
- Stramaglia S., Refice A., Guerriero L. Statistical mechanics approach to the phase unwrapping problem // Elsevier, Physics A. Vol. 276, No 3. 15 February 2000. – P. 521–534 (14).
- L e e J. -S. et al. Intensity and phase statistics of multilook polarimetric and interferometric imagery // IEEE Transactions on Geoscience and Remote Sensing. – 1994. – Vol. 32. – P. 1017–1028.
- L e e J. -S. et al. A new technique for noise filtering of SAR interferometric phase images // IEEE Transactions on Geoscience and Remote Sensing. – 1998. – Vol. 36. – P. 1456–1465.

Статья поступила в редакцию 5.03.2010

Роман Игоревич Шувалов родился в 1984 г., окончил в 2007 г. МГТУ им. Н.Э. Баумана. Аспирант и ассистент кафедры "Вычислительная математика и математическая физика" МГТУ им. Н.Э. Баумана, инженер ОАО "ВПК "НПО машиностроения". Автор семи научных работ в области математического моделирования и обработки цифровых изображений Земли, получаемых космическими радиолокаторами с синтезированной апертурой антенны.

R.I. Shuvalov (b.1984) graduated from the Bauman Moscow State Technical University in 2007. Post-graduate and assistant lecturer of "Computational Mathematics and Mathematical Physics" department of the Bauman Moscow State Technical University.

Engineer of NPO Mashinostroyenia. Author of 7 publications in the field of mathematical modeling for processing of digital images of Earth surface acquired by synthetic aperture radars.