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Abstract Keywords 
In this paper, we derive a nonstationary distribution 
function describing the energy distribution of the 
cascade of moving atoms taking into account their 
multiplication. The function was derived by solving the 
Boltzmann kinetic equation. The development of the 
cascade was considered for the materials consisting of 
atoms of the same type without taking into account the 
binding energy of atoms at the crystal lattice sites. The 
scattering of moving atoms is assumed to be elastic and 
spherically symmetrical in a center-of-inertia system, 
and the interaction cross-section is assumed to be 
constant. The use of these assumptions allows us to 
derive simple analytic formulas for the nonstationary 
energy distribution function for the cascade and analyze 
its main distinctive features. The results obtained allow 
evaluating the accuracy of various approximate 
solutions 
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Introduction. One of the critical processes in designing nuclear reactors and 
thermonuclear facilities is the choice of materials withstanding prolonged 
exposure to ionizing radiation. When fast particles, especially neutrons, irradiate 
solids, the atoms of the crystal lattice receive the energy of the impinging 
particle. If the energy is greater than a threshold value, the atoms are knocked 
out of their equilibrium positions. Then the exchange of energy between moving 
atoms and atoms in the crystal lattice sites initiates new generations of knocked-
on atoms. As a result of this, a so-called atomic collision cascade takes place. The 
cascade causes the initiation and accumulation of radiation defects (vacancies 
and interstitial atoms) in structural materials, making them change their 
physicomechanical properties [1, 2]. 
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There is a large body of research investigating the development of atomic 
collision cascades in solids [3−9]. In Ref. [7], a steady-state distribution function 
describing the energy distribution of a cascade of moving atoms was derived for 
the simplest partial case of elastic and spherically symmetrical scattering in the 
center-of-mass system without taking into account the binding energy of atoms in 
the lattice sites. In Ref. [9], based on solving the Boltzmann kinetic equation, an 
energy distribution function was derived. This function describes the steady-state 
deceleration of a cascade of moving for the exponential interaction potential 

1/ nU r  taking into account the binding energy of atoms in the lattice sites.  
In this paper, the Boltzmann kinetic equation was solved to derive the 

nonstationary energy distribution function describing the development of a 
cascade of moving atoms taking into account their multiplication. The scattering 
of the moving atoms is elastic and spherically symmetrical in the center-of-
inertia, and the interaction cross-section is constant.  

One of the advantages of using these approximations is that they allow 
deriving simple analytic expressions for the nonstationary distribution function 
of a cascade of moving atoms and analyzing its main features. These results can 
be used to evaluate the accuracy of various approximate solutions.  

Problem statement. We consider a solid body consisting of atoms of the 
same type and neglect their binding energy in the crystal lattice sites. The kinetic 
equation describing a nonstationary energy distribution of moving atoms from 
an instantaneous equally distributed in the space monoenergetic source without 
taking into account the collisions between the atoms is given by [10]: 
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where  is velocity of atoms; ( , )E t  is collision density of moving atoms, 
, , ,E t E f E t  ,f E t dE  is number of atoms with energy E  in 

the range dE  at the moment of time t per unit volume; P E E  is scattering 
indicatrix (the probability of a moving atom with energy E  to transition to a 

unit energy range near E  during collision), where ,
E E
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,E E  E  is differential and total cross-sections of the atom 
scattering, respectively; t  is Dirac delta function; 0N  is total number of 
moving atoms in a unit volume; 0E  is initial energy of the atoms. 
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The first integral on the right-hand side of the kinetic equation (1) describes 
a transition of a moving atoms with energy E  to the state with the energy .E   
A knocked-on atom receives a kinetic energy .E E  The second integral 
takes into account the formation of a knocked-on atom with the energy ,E  
when the moving atom transitions to a state with the energy .E E  If we 
omit the second integral in the right-hand side of the equation (1) we get a 
regular particle deceleration equation [10]. 

In case of the elastic spherically symmetrical scattering in the center-of-
inertia system, the scattering indicatrix is given by [10]: 

 1 .P E E
E

 (2)  

Using Eq. (2), Eq. (1) can be transformed as follows: 
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Solution of the kinetic equation. We apply a direct Laplace transformation 
to both sides of Eq. (3) [11] 
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and get the following expression: 
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We separate the nonscattered radiation from the solution of the kinetic 
equation  
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By substituting Eq. (6) in Eq. (5), we get the following expression  
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We take into account the fact that the scattering cross-section is constant 
constE  and differentiate Eq. (7) with respect to the energy to get the 

differential equation for the function 0 , :E p  
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The solution of Eq. (8) must satisfy the initial condition (see Eq. (7)): 
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The solution of Eq. (8) taking into account the initial condition (9) has the 
following form  
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We should note the result of (10) coincides with the solution of the 
corresponding steady-state problem [7] if 0.p  Using Eq. (10), we find a 
Laplace image of the function ,f E p  (see Eq. (6)):  
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By applying the inverse Laplace transformation [11] to Eq. (11), we finally 
derive the nonstationary energy distribution of an atomic collision cascade 
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where 0 t  is dimensionless time; 0/E E  is dimensionless energy. 
Analysis of the results. Let us investigate how the number of particles and 

the total energy change in a cascade of moving atoms.  
We find a change over time of the total number of particles in the cascade: 
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To calculate the integral (13), we use the Laplace image (11): 
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By applying the inverse Laplace transform [11], we get  

 20
11 .
6
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According to Eq. (15), the number of moving atoms in the cascade is 
growing. Besides, this growth is not limited, as the binding energy of atoms in 
the lattice sites is not taken into account. 

Let us determine a change over time of the total energy of the particles in the 
cascade: 
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Using the Laplace image (11), we get  
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or 
 0 0.N t N E  (18) 

Despite the growth of the number of moving atoms, their total energy 
remains constant. This can be explained by the fact that the binding energy  
of atoms in the lattice sites is not taken into account.  Because of this, the energy  
a stationary atom has when it starts moving is equal to the energy given to it by  
a moving atom.  

Relations (15), (18) can be used to evaluate the time period for which the 
result from Eq. (12) is valid without taking into account the binding energy of 
atoms. As the creation of knocked-on atom takes the energy ,d  the amount of 
energy dE spent on knocking out atoms will grow with time (see Eq. (15)): 
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0

1 .
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In this case, the result (12) taking into account the binding energy will also 
be valid as long as the quantity (19) is much less than the quantity (18), i.e., for 
the time  

 06 .
d
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Let us make an evaluation using Eq. (20). Assume the neutron initiating the 
cascade has the energy of n  14 MeV. These neutrons given a nucleus with 
the mass number of M  the average energy of 2 /n M  [10]. In this case, the 
initial energy of the knocked out atom is 0E  0.5 MeV for iron ( 56).M  
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Assuming that d  10 eV and using Eq. (20), we get that the result from Eq. 
(12) will also be valid for taking into account the binding energy of atoms in the 
lattice sites for iron for the time 25, 5 10 .  

Let us analyze the final result for the distribution function (12). Figure 1 
shows the change over time of this function 0 0/f f E N  for different val-
ues of the energy. If the energy decreases the peak of the time history shifts to the 
right and its height increases. The first fact is straightforward. The less energy, the 
more time is required to reach it during deceleration. The second fact (the in-
crease of the function’s peak) is due to the multiplication of atoms in the cascade. 

Fig. 1. Time histories of the distribution function  
for the energy 0/E E  10−1 (1), 10−2 (2), 10−3 (3) 10−4 (4) 

 
Figure 2 shows the plot of the distribution function (12) ( ( ))f vs. energy at 

different time points. As time progresses, the atoms shift to the lower energy 
region due to deceleration. We should also take into account that the area under 
each curve for a given time point is equal to the number of atoms at this time 
point. The area increases with time according to the law determined by Eq. (15).  

Comparing the results with the distribution function of decelerating  
atoms without taking into account atom multiplication. The distribution 
function for the decelerating atoms without taking into account their multiplica-
tion is described by Eq. (1), where the second integral in the right-hand side is 
omitted. We use the procedure similar to the one used before and determine  
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Fig. 2. Distribution function vs. energy 0( / )E E  at time  
  = 300 (1), 200 (2), 100 (3) and 50 (4) 

After applying the inverse Laplace transformation, we get the following 
result (also see [10]): 
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The atom multiplication is not taken into account here. Therefore, we can 
easily conclude that the total number of atoms does not change with time: 
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Let us analyze the result from Eq. (22) and compare it with the one from  
Eq. (12). Figure 3 shows the change over time of the function (22) 

0 0/dec decf f E N  for the same energy values as for Eq. (12) in Fig. 1. 
For the latter case, the peaks of the distribution shift to the right with 

decreasing energy, whereas the peak height increases. The first fact can also be 
explained that the smaller the energy, the more time it takes to reach it during 
deceleration. The peak height increases because the rate of increase of the 
number of atoms for a given energy does not depend on it (see Eq. (22)), while 
the fall time significantly decreases with decreasing energy (the exponent  
in Eq. (22) is ). The factor is also present during the cascade development, 
but the peak height growth is much more significant due to the multiplication of 
atoms (see the curves in Fig. 1 and Fig. 3). Figure 4 shows the plot of the 
distribution function (22) ( )decf  vs. energy at different time points. As time 
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Fig. 3. Time histories of the distribution function without taking into account atom 
multiplication for the energy values 10−1 (1), 10−2 (2), 10−3 (3) and 10−4 (4) 
 

progresses, atoms shift to the lower energy area due to deceleration. We should 
also note that the area under each curve corresponding to a certain point in 
time is equal to the total number of atoms at this point, and this number 
remains constant (see Eq. (23)). Compared to the curves in Fig. 2, the curves in 
Fig. 4 are much narrower as the multiplication of atoms was not taken into 
account here.  

Fig. 4. Energy distribution function vs. energy  without takin into account the 
binding energy at points in time  = 300 (1), 200 (2), 100 (3) and 50 (4) 
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Conclusion. Based on the solution of the Boltzmann kinetic equation, we 
derived a distribution function (12) describing the nonstationary energy 
distribution of a cascade of moving decelerating atoms taking into account their 
multiplication. To solve the equation, it was assumed that the scattering of 
moving atoms is elastic and spherically symmetrical in the center-of-inertia 
system, the interaction cross-section is constant, a solid irradiated consists  
of atoms of the same type, and the binding energy of the atoms was not taken 
into account. Based on the laws of conservation, we formulated the criterion 
(20) indicating for which points in time the result from Eq. (12) will also be valid 
if the binding energy is taken into account.  

We analyzed the special features of the distribution function caused by the 
increased number of atoms of in the cascade and having a generic character. 
Besides, we compared this distribution against the similar result, which does not 
take into account the multiplication of atoms in the cascade (22), and identified 
the principal differences between these functions. It should be noted that the 
results obtained can be used to evaluate the accuracy of various approximate 
solutions. 

Translated by K. Zykova 
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