|

Температурное поле цилиндрического тела в режиме периодического разогрева

Авторы: Мартинсон Л.К., Чигирева О.Ю. Опубликовано: 17.06.2015
Опубликовано в выпуске: #3(60)/2015  
DOI: 10.18698/1812-3368-2015-3-88-98

 
Раздел: Математика и механика | Рубрика: Математическая физика  
Ключевые слова: нестационарный процесс теплопроводности, нелинейная математическая модель, дискретизация по временной переменной, бесконечная система линейных алгебраических уравнений

Рассмотрен процесс разогрева цилиндрического тела при периодическом тепловом воздействии на его торцевые поверхности. Математическая модель изучаемого процесса включает в себя нелинейное дифференциальное уравнение параболического типа, учитывающее зависимость теплофизических свойств материала от температуры, а также граничные условия, описывающие процессы теплообмена на поверхности тела. Предложен алгоритм расчета нестационарного температурного поля цилиндрического тела, основанный на дискретизации дифференциального уравнения по временной переменной с достаточно малым шагом разбиения. На k-м временном шаге распределение температуры в цилиндрическом теле ищется в форме разложения в двойной тригонометрический ряд Фурье, коэффициенты которого определяются из решения бесконечной системы линейных алгебраических уравнений методом редукции. Приведен численный пример расчета нестационарного температурного поля в цилиндрическом теле при периодическом импульсном разогреве его торцевых поверхностей. Представлены зависимости температуры для различных внутренних точек цилиндрического тела от времени.

Литература

[1] Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964. 488 с.

[2] Лыков А.В. Теория теплопроводности. М.: Высш. шк., 1967. 600 с.

[3] Карташов Э.М. Аналитические методы в теории теплопроводности твердых тел. М.: Высш. шк., 2001. 550 с.

[4] Зарубин В.С. Инженерные методы решения задач теплопроводности. М.: Энергоатомиздат, 1983. 328 с.

[5] Димитриенко Ю.И. Механика композиционных материалов при высоких температурах. М.: Машиностроение, 1997. 368 с.

[6] Зарубин В.С. Оптимальная толщина охлаждаемой стенки, подверженной местному нагреву // Известия высших учебных заведений. Машиностроение, 1970. № 10. С. 18-21.

[7] Димитриенко Ю.И., Минин В.В., Сыздыков Е.К. Моделирование внутреннего тепломассопереноса и термонапряжений в композитных оболочках при локальном нагреве // Математическое моделирование. 2011. Т. 23. № 9. С. 14-32.

[8] Аттетков А.В., Власова Л.Н., Волков И.К. Особенности формирования температурного поля в системе под воздействием осциллирующего теплового потока // Тепловые процессы в технике. 2012. Т. 4. № 12. С. 553-558.

[9] Григорьянц А.Г., Шиганов И.Н., Мисюров А.И. Технологические процессы лазерной обработки. М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. 663 с.

[10] Григорьянц А.Г. Основы лазерной обработки материалов. М.: Машиностроение, 1989. 300 с.

[11] Углов А.А., Смуров И.Ю., Лашин А.М., Гуськов А.Г. Моделирование теплофизических процессов импульсного лазерного воздействия на металлы. М.: Наука, 1991. 287 с.

[12] Козлов В.П. Локальный нагрев полуограниченного тела лазерным источником // Инженерно-физический журнал. 1988. Т. 54. № 3. С. 484-493.

[13] Малов Ю.И., Мартинсон Л.К., Рогожин В.М. Математическое моделирование процессов тепломассопереноса при плазменном напылении // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 1994. № 3. С. 3-16.

[14] Чигирёва О.Ю. Математическое моделирование процесса разогрева двухслойного цилиндра движущимся кольцевым источником теплоты // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2011. № 2. С. 98-106.

[15] Мартинсон Л.К., Малов Ю.И. Дифференциальные уравнения математической физики. М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 368 с.

[16] Малов Ю.И., Мартинсон Л.К. Приближенные методы решения краевых задач. М.: Изд-во МВТУ им. Н.Э. Баумана, 1989. 26 с.

[17] Чигирёва О.Ю. Математическое моделирование процесса разогрева цилиндрической поверхности движущимся интенсивным источником тепла // Инженерно-физический журнал. 2006. Т. 79. № 6. С. 31-37.

[18] Чернышов А.Д. Метод быстрых разложений для решения нелинейных дифференциальных уравнений // Журнал вычислительной математики и математической физики. 2014. Т. 54. № 1. С. 13-24.

[19] Будак Б.М., Фомин С.В. Кратные интегралы и ряды. М.: Наука, 1965. 608 с.

[20] Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: Наука, 1984. 752 с.

[21] Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. М.: Физматгиз, 1962. 708 с.

[22] Чигирёва О.Ю. Расчет оптимальной толщины слоя термоизоляции в многослойном цилиндрическом пакете // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2005. № 1. С. 94-101.

[23] Матус П.П. О корректности разностных схем для полулинейного параболического уравнения с обобщенными решениями // Журнал вычислительной математики и математической физики. 2010. Т. 50. № 12. С. 2155-2175.

[24] Чиркин В.С. Теплофизические свойства материалов: Справочное руководство. М.: Физматгиз, 1959. 356 с.