|

О структуре системы уравнений классической электродинамики

Авторы: Макаров А.М., Лунёва Л.А., Макаров К.А. Опубликовано: 23.05.2014
Опубликовано в выпуске: #3(54)/2014  
DOI:

 
Раздел: Физика  
Ключевые слова: электромагнитное поле, источники поля, система уравнений, скрытая симметрия

Произвольное векторное поле в безграничном пространстве полностью определяется распределением скалярного и векторного источников поля. Объемной плотностью скалярного источника является дивергенция, а объемной плотностью векторного источника - ротор рассматриваемого векторного поля. Электромагнитное поле представляет собой совокупность векторных электрического и магнитного полей (векторное поле напряженности электрического поля и векторное поле магнитной индукции). Это предопределяет состав и структуру уравнений классической электродинамики: два скалярных уравнения для объемных плотностей скалярных источников поля и два векторных уравнения для объемных плотностей векторных источников поля. Скрытая симметрия системы уравнений электро- и магнитостатики в части физического содержания скалярных и векторных источников поля становится явной при формальном использовании понятий физически несуществующих "магнитных зарядов" и "магнитных токов". Специфичность уравнений электро- и магнитостатики и скрытая симметрия источников векторного поля напряженности электрического поля и векторного поля магнитной индукции в совокупности с законом сохранения электрического заряда и законом сохранения электромагнитной энергии могут быть положены в основу построения системы уравнений классической электродинамики. Показано, что закон полного тока и закон электромагнитной индукции можно рассматривать как следствия обобщения законов электро- и магнитостатики и перечисленных выше физических законов.

Литература

[1] Калашников С.Г. Электричество. М.: Наука, 1985. 576 с.

[2] Матвеев А.Н. Электричество и магнетизм. М.: Высш. шк., 1983. 463 с.

[3] Савельев И.В. Курс общей физики. В 5 кн. Кн. 2: Электричество и магнетизм. М.: АСТ: Астрель, 2005. 336 с.

[4] Иродов И.Е. Электромагнетизм. Основные законы. М.: Лаборатория Базовых Знаний, 2000. 352 с.

[5] Гершензон Е.М., Малов Н.Н., Мансуров А.Н. Электродинамика. М.: Издательский центр "Академия", 2002. 352 с.

[6] Бессонов Л.А. Теоретические основы электротехники. Электромагнитное поле. М.: Гардарики, 2001. 317 с.

[7] Матвеев А.Н. Электродинамика. М.: Высш. шк., 1980. 383 с.

[8] Кугушев А.М., Голубева Н.С., Митрохин В.Н. Основы радиоэлектроники. Электродинамика и распространение радиоволн. М.: Изд-во МГТУ им. Н.Э. Баумана, 2001.368 с.

[9] Голубева Н.С., Митрохин В.Н. Основы радиоэлектроники сверхвысоких частот. М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. 488 с.

[10] Новожилов Ю.В., Яппа Ю.А. Электродинамика. М.: Наука, 1978. 352 с.

[11] Макаров А.М., Лунёва Л.А., Макаров К.А. Интегральные уравнения электростатики. Необратимые процессы в природе и технике // Труды Шестой Всероссийской конференции 26-28 января 2011 г. В 3 ч. Ч. 1. М.: МГТУ им. Н.Э. Баумана. 2011. С. 207-210.

[12] Макаров А.М., Лунёва Л.А., Макаров К.А. Обоснование уравнений электростатики изотропных диэлектриков. Необратимые процессы в природе и технике // Труды Шестой Всероссийской конференции 26-28 января 2011 г. В 3 ч. Ч. 1. М.: МГТУ им. Н.Э. Баумана. 2011. С. 211-214.

[13] Макаров А.М., Лунёва Л.А., Макаров К.А. Об основных уравнениях электростатики изотропных диэлектриков // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2011. № 2 (41). С. 25-40.

[14] Макаров А.М., Лунёва Л.А., Макаров К.А. Магнитостатика проводящих сред. Необратимые процессы в природе и технике // Труды Шестой Всероссийской конференции 26-28 января 2011 г. В 3 ч. Ч. 1. М.: МГТУ им. Н.Э. Баумана. 2011. С. 215-218.

[15] Макаров А.М., Лунёва Л.А., Макаров К.А. Статика изотропных магнетиков. Необратимые процессы в природе и технике // Труды Шестой Всероссийской конференции 26-28 января 2011 г. В 3 ч. Ч. 1. М.: МГТУ им. Н.Э. Баумана. 2011. С. 219-222.

[16] Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. В 10 т. Т. 2. Теория поля. М.: Гос. изд-во физ.-мат. лит, 1962. 423 с.

[17] Савельев И.В. Основы теоретической физики. В 2 т. Т. 1. Механика и электродинамика. М.: Наука, 1991. 496 с.

[18] Абрагам М., Беккер Р. Теория электричества. Л.; М.: ОНТИ, Гл. ред. общетехн. лит, 1936. 281 с.

[19] Пановский В., Филипс М. Классическая электродинамика. М.: Физматгиз, 1963. 432 с.

[20] Уиттекер Э. История теории эфира и электричества. Ижевск: НИЦ "Регулярная и хаотическая динамика", 2001. 512 с.

[21] Макаров А.М., Лунёва Л.А., Макаров К.А. Теория и практика классической электродинамики. М.: URSS, 2013. 767 c.

[22] Макаров А.М., Макаров К.А. Закон полного тока как следствие закона Био-Савара-Лапласа. Необратимые процессы в природе и технике // Тезисы докладов Третьей Всероссийской конференции 24-26 января 2005 г. М.: МГТУ им. Н.Э. Баумана. С. 64-65.

[23] Макаров А.М., Макаров К.А. К вопросу о циркуляции по замкнутому контуру напряженности магнитного поля незамкнутой кривой с током. Необратимые процессы в природе и технике // Тезисы докладов Третьей Всероссийской конференции 24-26 января 2005 г. М.: МГТУ им. Н.Э. Баумана. С. 66.

[24] Кочин Н.Е. Векторное исчисление и начала тензорного исчисления. М.: Наука, 1965. 427 с.

[25] Умов Н.А. Уравнения движения энергии в телах. В кн.: "Избранные сочинения". М.; Л.: Гос. изд-во теоретической и технической литературы, 1950. 575 с.