9. L i b e r m a n M. A., I v a n o v M. F., Va l i e v D. M., E r i k s s o n L. -E.
Hot spot formation by the propagating flame and the influence of EGR on knock
occurrence in SI engines // Combust. Sci. and Tech. – 2006. – Vol. 178. – No. 9. –
P. 1613–1647.
10. I v a n o v M. F., K i v e r i n A. D., L i b e r m a n M. A. Hydrogen-oxygen flame
acceleration and transition to detonation inchannels with no-slip walls for a detailed
chemical reaction model // Physical review E. – 2011. – Vol. 83. – P. 056313-1–
056313-16.
11. K a g a n L., S i v a s h i n s k y G. The transition from deflagration to detonation
in thin channels // Combustion flame. – 2003. – Vol. 134. – P. 389–397.
12. L i b e r m a n M. A., I v a n o v M. F., P e i l O. E., Va l i e v D. M.,
E r i k s s o n L. -E. Numerical studies of curved stationary flames in wide tubes
// Combust. Theory and Modelling. – 2003. – Vol. 7. – P. 653–676.
13. O r a n E. S., G a m e z o V. N. Origins of the deflagration-to-detonation transitionin
gas-phase combustion // Combust. Flame. – 2007. – Vol. 148. – P. 4–47.
14. K a s s o y D. R., K u e h n J. A., N a b i t y M. W., C l a r c k e J. F. Detonation
initiation on the microsecond time scale: DDTs // Comb. Theor. Modelling. – 2008.
– Vol. 12. – No 6. – P. 1009–1047.
15. L i b e r m a n M. A., K i v e r i n A. D., I v a n o v M. F. Regimes of chemical
reaction waves initiated by nonuniform initial conditions for detailed chemical
reaction models // Physical reviewe E. – 2012. – Vol. 85. – P. 056312-1–056312-11.
16. Г е л ь ф а н д Б. Е., П о п о в О. Е., Ч а й в а н о в Б. Б. Водород: параметры
горения и взрыва. – М.: Физматлит. – 2008. – 288 с.
17. Б о х о н Ю. А., Г а л ь б у р т В. А., Г о с т и н ц е в Ю. А. и др. Развитие
взрыва газовой смеси за ударными волнами / Препринт ИВТАН № 2-416. – М.,
1998. –59 с.
18. GRI-Mech3.0/
#cite
19. S t a r i k A. M., T i t o v a N. S. Kinetics of detonation initiation in the supersonic
flow of the
H
2
−
O
2
(air) mixture in O
2
molecule excitation by resonance laser
radiation // Kinetics and Catalysis. – 2003. – Vol. 44. – P. 28–39.
20. P o p o v N. A. Influence of nonequilibrium excitation on ignition of hydrogen-
oxygen mixtures. Theromphys. // High Temp. – 2007. – Vol. 45. – P. 296–31.
21. S h a t a l o v O. P., I b r a g u i m o v a L. B., P a v l o v V. A., et al. Analysis of
the kinetic data described oxygen-hydrogen mixtures combustion // Proceedings of
the European Combustion Meeting. – 2009. – P. 811376.
22. S l a c k M., G r i l l o A. Investigation of hydrogen-air ignition sensitized by nitric
oxide and nitrogen dioxide // NASA Report CR-2896. – 1977.
23. S c h u l t z E., S h e p h e r d J. Validation of detailed reaction mechanisms for
detonation simulation / Cal. Inst. of Tech. Graduate Aeronautical Lab. Tech. Rep.
FM 99-5. – 2000. – 230 р.
24. C o w a r d H. F., J o n e s G. W. Limits of flammability of gases and vapors /
Bulletin 503, US Bureau of Mines. – 1952.
25. C a s h d o l l a r K. L., Z l o c h o w e r I. A., G r e e n G. M., T h o m a s R. A.,
H e r t z b e r g M. Flammability of methane, propane, and hydrogen gases // Journal
of Loss Prevention in the Process Industries. – 2000. – Vol. 13. – No. 3–5. – P. 327–
340.
26. F l a m e acceleration and deflagration-to-detonation transition in nuclear safety.
State-of-the Art Report, OCDE-Nuclear Safety, NEA/CSNI/R, 2000.
27. K u z n e t s o v M., L i b e r m a n M., M a t s u k o v I. Experimental study of
the preheat zone formation and deflagration to detonation transition // Combustion
Science and Technology. – 2010. – Vol. 182. – No. 11–12. – P. 1628–1644.
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2013. № 1
107