Ю. Ю. Протасов, В. В. Христофоров

ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ ХАРАКТЕРИСТИК КОНДЕНСИРОВАННЫХ СРЕД РАДИАЦИОННО-ГАЗОДИНАМИЧЕСКИХ СИСТЕМ ВЫСОКОЙ ПЛОТНОСТИ МОЩНОСТИ В ВАКУУМНЫХ УСЛОВИЯХ

Приведены результаты экспериментального исследования в вакуумных условиях оптических характеристик ряда веществ — оптической прозрачности, коэффициентов поглощения и отражения в ИК- и УФ-областях спектра на стандартных лазерных частотах ($\lambda_{\pi}\approx 0.241;\ 0.4416;\ 0.6328;\ 0.693;\ 1.06;\ 10.6\,\text{мкм})$ и спектрально-усредненных (групповых) коэффициентов отражения в ВУФ-диапазоне ($\hbar\nu\approx10...70\,$)В) спектра при до- и сверхпороговой для развитого поверхностного испарения плотности мощности зондирующего излучения.

В настоящее время для решения актуальных задач физики и технологии концентрированных потоков энергии активно разрабатываются и исследуются радиационно-газодинамические установки высокой плотности мощности (лазерные инжекторы и ускорители газовоплазменных потоков, плазменно-оптические конверторы когерентного излучения в коротковолновое широкополосное излучение и электрический ток, генераторы сверхсильных магнитных полей и др. системы) [1, 2]. Применяемый здесь типовой ряд тугоплавких и оптически прозрачных диэлектриков (оксидов бериллия, алюминия, кремния, фторидов магния, бария, стронция) и материалов со специальными оптическими и теплофизическими свойствами [3, 4] находится в условиях интенсивных лучевых, ударно-волновых и тепловых нагрузок, поэтому изучение их оптических характеристик (в том числе эмиссионных и абсорбционных) в широком диапазоне энергий квантов ($h\nu \approx 10^{-1}...10^2$ эВ) в условиях многофакторного радиационногазодинамического воздействия является необходимым не только для количественного описания лазерно-индуцированных фазовых переходов твердое тело-газ-плазма, представляющих общефизический интерес, но и при осуществлении всех циклов разработок и оптимизации лучевых энергогенерирующих и энергопреобразующих установок, контроля их деградационных параметров [5-7] в режиме реального времени.

Экспериментальные условия и результаты. Исследование частотной и температурной зависимостей коэффициентов отражения и

поглощения тугоплавких диэлектриков (α -Al $_2$ O $_3$, SiO $_2$, MgF $_2$, SrF $_2$), сложных по химическому составу полимеров ((CH $_2$) $_n$, (CH $_2$ O) $_n$) и высокотемпературных компаундов со смешанным характером отражения излучения (типа BNC) проводилось в вакуумных условиях ($p_0 \approx 10\,\Pi a$), используя методики ИК- и УФ-спектрорефлектометрии, абсорбционной/эмиссионной спектроскопии и полихроматической пирометрии [8]. Для экспериментального определения коэффициентов отражения, эмиссионных и абсорбционных спектров в ИК- и ВУФ-диапазоне ($h\nu \approx 10^{-1}\dots 10^2\,{\rm yB}$) и в широком интервале температур (от криогенных до температур фазовых переходов) в условиях интенсивного лучевого воздействия ($I_0 \approx 10^4\dots 10^{11}\,{\rm BT/cm^2}$) на стандартных лазерных частотах и в коротковолновом контиинууме разработан экспериментально-диагностический оптотеплофизический модуль стенда "Луч CO1".

Исследовались плоские (в пределах пятна облучения) шлифованные образцы (толщиной $\delta\approx 1\dots 5$ мм) из высокотемпературных диэлектриков и со случайной, не имеющей выделенного направления структурой шероховатости (т.е. с размером шероховатости, превышающим длину волны зондирующего излучения). Их нагрев осуществлялся с помощью CO_2 -лазера мощностью $\approx \! 20\,\mathrm{Bt}$. Методическая и инструментальная погрешность экспериментов в области стандартных лазерных частот не превышает $20\pm 3\,\%$, для диапазона спектра $h\nu_1\approx 9.24\dots 11.2\,$ эВ составляет $\approx \! 35\pm 5\,\%$, а в области вакуумного ультрафиолета с $h\nu>11.2\,$ эВ $-\approx \! 55\pm 10\,\%$. Тестовое исследование зависимости $R(\lambda_{\scriptscriptstyle \Pi},T)$ для алюминиевых массивных ($\Delta\!\!\approx\!\!4\,\mathrm{mm}$) мишеней в фиксированных частотных интервалах ИК- и УФ-диапазонов спектра ($\lambda_{\scriptscriptstyle \Pi}$ от 10,6 до 0,241 мкм) коррелирует с характером изменения зависимости $R(\lambda_{\scriptscriptstyle \Pi},T)$, определяемым теорией Друде для чистых металлов [10].

Некоторые результаты экспериментального определения температурной зависимости коэффициентов отражения $(R(\lambda_{\rm A},T))$ на фиксированных лазерных частотах приведены на рис. 1 для условий низкой спектральной плотности мощности $(I_0 \ll I_0^* {\approx} 10^3\,{\rm Bt/cm^2})$ зондирующего излучения, т.е. допороговой для начала развития волны испарения поверхности облучаемых мишеней. На рис. 2 представлены результаты измерения спектральной зависимости коэффициентов отражения $R(\lambda)$ для стандартных лазерных частот $(\lambda_1=0.241; \lambda_2=0.4416; \lambda_3=0.6328; \lambda_4=0.693; \lambda_5=1.03; \lambda_6=10.6\,{\rm мкм})$ и усредненные спектрально-групповые коэффициенты отражения $R(\Delta\lambda)$ в ВУФ-области спектра (при $T{\approx}300\,{\rm K}$) для диапазонов энергий квантов $h\nu_1{\approx}9.24\dots11.2\,{\rm 3B}; h\nu_2{\approx}12.1\dots22\,{\rm 3B}; h\nu_3{\approx}15.8\dots28\,{\rm 3B}; h\nu_4{\approx}21.6\dots50\,{\rm 3B}; h\nu_5{\approx}24.6\dots65\,{\rm 3B}.$ Хорошая воспроизводимость

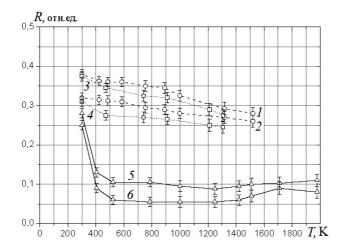


Рис. 1. Температурная зависимость коэффициентов отражения $R(\lambda_{\rm A},T)$ тугоплавких диэлектриков на стандартных лазерных частотах ИК-зондирующего излучения:

lpha-Al $_2$ O $_3$ ($I-\lambda_{_{\rm II}}=1,06$ мкм, $2-\lambda_{_{\rm II}}=10,6$ мкм); $ho\approx 3,971\,{\rm г/cm}^3;~{\rm SiO}_2$ ($3-\lambda_{_{\rm II}}\approx 1,06$ мкм, $4-\lambda_{_{\rm II}}\approx 10,6$ мкм), $ho\approx 2,652\,{\rm г/cm}^3;~{\rm BNC}$ ($5-\lambda_{_{\rm II}}\approx 1,06$ мкм, $6-\lambda_{_{\rm II}}\approx 10,6$ мкм), $ho\approx 2,344\,{\rm r/cm}^3;~I_0(\lambda_1=1,06$ мкм) = $2,3\cdot 10^{-1}\,{\rm Bt/cm}^2,$ $I_0(\lambda_2=10,6$ мкм) = $1,4\,{\rm Bt/cm}^2$

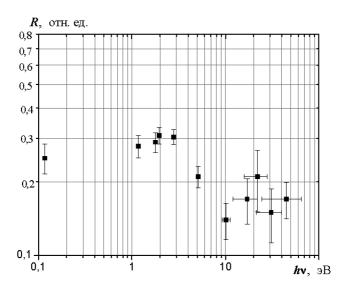


Рис. 2. Спектральная зависимость коэффициентов отражения карбонитрида бора BNC

экспериментальных результатов $R(\lambda_{\rm л})$ на лазерных частотах зондирования и $R(\Delta\lambda)$ (при ВУФ-широкополосном) в диапазоне температур $T{\approx}300\dots850\,{\rm K}$ позволяет выявить основные закономерности частотного распределения коэффициентов отражения в ИК- и ВУФ-областях спектра данного класса веществ, которые могут быть использованы для спектрально-энергетического оптимизационного анализа лучевых

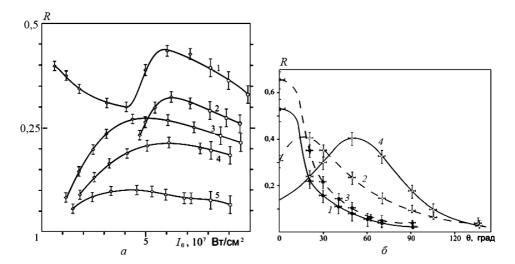


Рис. 3. Экспериментальные значения коэффициентов отражения: a- зависимость интегрального коэффициента отражения от плотности потока I_0 лазерного излучения для плоских мишеней различного химического состава: $I-(\mathrm{CH_2O})_n,\ \lambda_2\approx 1,06\ \mathrm{mkm};\ 2-(\mathrm{CH_2})_n,\ \lambda_2\approx 1,06\ \mathrm{mkm};\ 3-((\mathrm{CH_2})_n+\mathrm{Al}),\ \lambda_1\approx 10,6\ \mathrm{mkm};\ 4-(\mathrm{C_2F_4})_n,\ \lambda_2\approx 1,06\ \mathrm{mkm};\ 5-\mathrm{Al_2O_3},\ \lambda_1\approx 10,6\ \mathrm{mkm};\ 6-$ зависимость коэффициента отражения от угла рассеяния θ при различных плотностях потока когерентного излучения: $I_1 \sim 10^7\ \mathrm{Pr}/\mathrm{cv}^2$

 $I,\ 2-I_0\approx 10^7\ \mathrm{Bt/cm^2},\ (\mathrm{CH_2O})_n$ -мишень, $\lambda_2\approx 1,06\ \mathrm{mkm};\ 3,\ 4-I_0\approx 3,5\cdot 10^7\ \mathrm{Bt/cm^2},\ (\mathrm{CH_2})_n$ -мишень, $\lambda_2\approx 1,06\ \mathrm{mkm};\ I,\ 3$ — нормальное падение луча; $2,\ 4$ — угол падения $\approx 45^\circ$

энергоустановок с применением стандартного фотометрического оборудования. Отметим, что в температурном диапазоне $850\dots 1900\,\mathrm{K}$ регистрируется значительный ($\approx\!30\,\%$) разброс значений $R(\Delta\lambda)$ в ВУФ-области спектра, что требует статистического анализа инструментальной погрешности в каждом спектральном интервале и дальнейшего развития данной экспериментальной технологии изучения спектрально-энергетических зависимостей $R(\Delta\lambda,T,I_0)$ с использованием вторичных метрологических эталонов [8].

Характерной особенностью зависимостей $R(I_0)$ (рис. 3) для полимерных мишеней является наличие максимумов отражения, достигаемых (как и начало резкого роста интегрального коэффициента отражения) в области сверхпороговых для развития волны термической ионизации (плазмообразования) значений интенсивностей излучения I_0 ($I_0 \geq I_0^{**}$). При плотности потока $I_0 > 10^7\,\mathrm{Bt/cm^2}$ и нормальном падении излучения на плоскую мишень (рис. 3, δ) диаграмма направленности рассеянного лазерного излучения, соответствующая различной ориентации мишени относительно зондирующего луча, заметно отличается от закона Ламберта; поворот плоской мишени на угол 45° приводит к расширению диаграммы направленности и смещению ее вершины на угол $\theta {\approx} 50^\circ$. При увеличении плотности потока лазерного излучения до $I_{0\,\mathrm{max}} {\approx} 2{\cdot} 10^8\,\mathrm{Bt/cm^2}$ угол поворота

диаграммы направленности уменьшается до $\theta \approx 20^{\circ}$. Интегрирование диаграммы напранормального вленности (для угла падения) в пределах полусферы дает значения полнокоэффициента отражения: $R(\lambda_1) \approx 55 \%$. Результаты измерений, так же как и относительно слабая зависимость диаграммы направленности от угла ориентации мишени при $I_0 > 5.10^7 \, {\rm BT/cm^2}, {\rm cootbetctby}$ ют теоретически анализируемым в [8] для более высоких значений I_0 и коррелируют с особенностями динамики волны поглощения лазерного излуче-

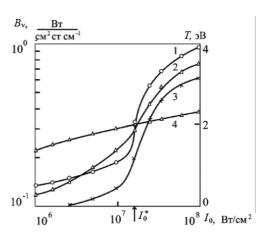


Рис. 4. Спектральная яркость $B_{\rm H}$ (1–3) и яркостная температура $T_{\rm S}$ (4) в ВУФ-области спектра приповерхностной лазерной плазмы плоской (СН $_2$ О) $_n$ -мишени, средние по полосам поглощения ксенона (1, 4), гелия (2), оксида азота (3) при $\lambda_{\rm H}=1,06$ мкм, $E_{\rm H}\approx170$ Дж

ния на длине волны $\lambda_1 \approx 10,6$ мкм и $\lambda_2 \approx 1,06$ мкм в газово-плазменном слое у полимерной мишени в вакууме, спектрально-яркостные характеристики которого иллюстрируются рис. 4, когда при пороговых интенсивностях воздействия $I_0^{**}(\lambda)$ образуется светоиндуцированная детонационная ударная волна (УВ). Оценки плазменных параметров в условиях генерации УВ при $I_0 > I_0^*(\lambda_1)$ показывают существование внутри области поглощения лазерного излучения (между фронтом УВ и плоскостью Жуге) плазменных зон с критической концентрацией электронов ($n_{e\,{ ext{\tiny KPUT}}} > 10^{10}\,{ ext{cm}}^{-3}$ для лазерного излучения с $\lambda_1 \approx 10.6 \, \text{мкм}$, что является причиной сильного отражения лазерного излучения, наблюдаемого экспериментально. При увеличении I_0 плотность электронов должна превышать критическую уже непосредственно на фронте УВ и поглощение лазерного излучения в этом случае возможно лишь в узком неравновесном релаксационном слое на ее фронте; однако при высоких интенсивностях потока лазерного излучения происходит переход от гидродинамического к радиационному механизму распространения волны поглощения, что сопровождается размытием фронта волны ионизации за счет появления перед УВ слоя прогретого газа, поглощающего лазерное излучения [6], что и является причиной наблюдаемого уменьшения коэффициента отражения от приповерхностной зоны при дальнейшем росте $I_0(t)$. При низких значениях плотностей потока ($I_0 < I_0^{**}$) вследствие возрастания времени плазмообразования $t_{\rm II}$ увеличивается вклад в полные потери за счет отражения лазерного излучения непосредственно от поверхности мишеней, что объясняет увеличение доли отраженной энергии для мишени с высоким коэффициентом отражения.

Характер относительного распределения зависимости $R(\Delta \lambda)$ в области энергий квантов 12...70 эВ соответствует экспериментальным данным для образцов лейкосапфира и оксида кремния марки КУ-1, полученных на синхротронном источнике при $T \approx 300 \, \mathrm{K}$. В ИК и УФ-области фиксированных лазерных частот зондирования измеренные значения $R(\lambda_{\pi})$ для карбонитрида бора (с учетом нелинейного распределения спектральной излучательной способности $A(\lambda)$) в области температур $T < 900 \, {\rm K}$ удовлетворительно ($\approx 20 \, \%$) соответствуют аналогичным абсолютным значениям $R(\lambda_{\scriptscriptstyle \Pi})$ базы данных NIST и их частотной зависимости. Генерируемый многомерный массив экспериментальных результатов (частотные и температурные зависимости коэффициентов отражения, спектральные, эмиссионные, абсорбционные и рефракционные характеристики ряда наиболее употребимых тугоплавких диэлектриков, полимеров и высокотемпературных компаундов сложного химического состава) является компонентом создаваемой в МГТУ им. Н.Э. Баумана электронной базы экспериментальных и расчетно-теоретических данных термодинамических, оптических и транспортных свойств рабочих веществ и конструкционных материалов плазменных и фотонных энергетических установок высокой плотности мощности ("ТОТ-МГТУ"), подробное описание структуры которой приводится в [11].

Работа выполнена по гранту Президента Российской Федерации для государственной поддержки молодых российских ученых – докторов наук (МД-4061.2007.8).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ф и з и к а $\,$ экстремальных состояний вещества / Под ред. В.Е. Фортова. М.: Изд-во ИПХФ РАН, 2007. 560 с.
- 2. Энциклопедия низкотемпературной плазмы. Вводный том. Т. 2 / Под ред. В.Е. Фортова. М.: Наука, 2001. С. 125–305.
- 3. Protasov Yu. S., Protasov Yu. Yu., Suslov V. I. // 35 Intersociety Energy Conversion Engineering Conference: AIAA paper № 2000–2887. N.Y.: AIAA, 2000. 7 p.
- 4. Протасов Ю. Ю. // 3-й Международный симпозиум по теоретической и прикладной плазмохимии / Сб. материалов. Т. 1. Иваново, 2002. С. 469–471.
- 5. C a r u s o A., S t r a n g i o C. // XXVII European Conf. on Laser Interaction with Matter: Book of Abstracts. Moscow, 2002. P. 148–149.
- 6. H u t c h i n s o n H. // XXVII European Conf. on Laser Interaction with Matter: Book of Abstracts. Moscow, 2002. P. 117–118.
- 7. Donaldson T. P., Hubbard M., Spalding I. J. // Phys. Rev. Lett. 1976. V. 37, no. 20. P. 1348–1351.
- 8. Arves J. P., Akyuzlu K. M. / AIAA Paper. 2000. No. 2000-92. 6 p.

- 9. Протасов Ю. С., Протасов Ю. Ю. // Приборы и техника эксперимента. 2002. № 6.
- Соколов А. В. Оптические свойства металлов. М.: Физматлит, 1961. 464 с.
- 11. Корышев О. В., Ноготков Д. О., Протасов Ю. Ю., Телех В. Д. Термодинамические, оптические и транспортные свойства рабочих веществ плазменных и фотонных энергетических установок. Т. 1 / Под ред. Ю.С. Протасова. М.: Изд-во МГТУ им. Н.Э. Баумана, 1999. 640 с.

Статья поступила в редакцию 15.02.2008

Юрий Юрьевич Протасов — д-р техн. наук, доцент кафедры "Газотурбинные и нетрадиционные установки" МГТУ им. Н.Э. Баумана. Автор более 100 научных работ в области фотонной энергетики.

Yu. Yu. Protasov — D.Sc. (Eng.), assoc. professor of "Gas-Turbine and Non-Traditional Facilities" department of the Bauman Moscow State Technical University. Author of over 100 publications in the field of photon power-engineering.

Владимир Владимирович Христофоров — научный сотрудник объединенного УНЦ фотонной энергетики. Автор более 20 научных работ в области оптики конденсированных сред.

V.V. Khristoforov — researcher of United Center for Photon Power-Engineering. Author of over 20 publications in the field of optics of condensed media.

ЖУРНАЛ "ВЕСТНИК МОСКОВСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА имени Н.Э. БАУМАНА"

В журнале публикуются наиболее значимые результаты фундаментальных и прикладных исследований и совместных разработок, выполненных в МГТУ имени Н.Э. Баумана и других научных и промышленных организациях.

Журнал "Вестник МГТУ имени Н.Э. Баумана" в соответствии с постановлением Высшей аттестационной комиссии Федерального агентства по образованию Российской Федерации включен в перечень периодических и научнотехнических изданий, в которых рекомендуется публикация основных результатов диссертаций на соискание ученой степени доктора наук.

Подписку на журнал "Вестник МГТУ имени Н.Э. Баумана" можно оформить через агентство "Роспечать".

Подписывайтесь и публикуйтесь! Подписка по каталогу "Газеты, журналы" агентства "Роспечать"

Индекс	Наименование серии	Объем выпуска	Подписная цена (руб.)	
		Полугодие	3 мес.	6 мес.
72781	"Машиностроение"	2	250	500
72783	"Приборостроение"	2	250	500
79982	"Естественные науки"	2	250	500

Адрес редакции журнала "Вестник МГТУ имени Н.Э. Баумана": 105005, Москва, 2-я Бауманская ул., д.5.

Тел.: (499) 263-62-60; (499) 263-67-98.

Факс: (495) 261-45-97. E-mail: press@bmstu.ru