Problem 3.17.
Is the Souslin number of any compact (strong) rotoid
countable?
Recall that a space
X
is
Mal’tsev
if there exists a continuous mapping
F
:
X
3
→
X
such that
F
(
x, x, y
) =
y
=
F
(
y, x, x
)
, for every
x, y
2
X
.
The Souslin number of every Mal’tsev compactum is countable (see [23],
[9]). Thus, Problem 3.18 below is related to Problem 3.17.
Problem 3.18.
Is every compact rotoid a Mal’tsev space?
Problem 3.19.
Is every compact strong rotoid homogeneous?
In the non-compact case, rotoids and strong rotoids are not so close
to topological groups as in the compact case. This became clear after the
following remarkable result in [10]:
Sorgenfrey line is a strong rotoid
. Thus,
a first-countable strong rotoid needn’t be metrizable, unlike a topological
group.
Observe that Sorgenfrey line is a paratopological group. The answer to
the next question, motivated by the result in [10] we just mentioned, will
be probably in the negative:
Problem 3.20.
Is every paratopological group a rotoid?
REFERENCES
1.
Arhangel’skii A.V.
On bicompacta hereditarily satisfying Souslin’s condition.
Tightness and free sequences.
Dokl. Akad. Nauk SSSR
199 (1971). P. 1227–1230.
English translation: Soviet Math. Dokl. 12 (1971). P. 1253–1257.
2.
Arhangel’skii A.V.
Relations between invariants of topological groups and their
subspaces.
Russian Math. Surveys
35:3 (1980). P. 1–23.
3.
Arhangel’skii A.V.
Topological Function Spaces. Kluwer, 1992.
4.
Arhangel’skii A.V.
A weak algebraic structure on topological spaces and cardinal
invariants.
Topology Proc.
28:1 (2004). P. 1–18.
5.
Arhangel’skii A.V.
Homogeneity of powers of spaces and the character.
Proc. Amer.
Math. Soc.
133:7 (2005). P. 2165–2172.
6.
Arhangel’skii A.V.
Topological spaces with a flexible diagonal.
Questions and Answers
in General Topology
27:2 (2009). P. 83–105.
7.
Arhangel’skii A.V.
and
Burke D.K.
Spaces with a regular
G
δ
-diagonal.
Topology and
Appl.
153 (2006). P. 1917–1929.
8.
Arhangel’skii A.V.
and
Ponomarev V.I.
It Fundamentals of General Topology in
Problems and Exercises. Reidel, 1984 (translated from Russian).
9.
Arhangel’skii A.V.
and
Tkachenko M.G.
Topological Groups and related Structures.
Atlantis Press, Amsterdam-Paris, World Scientific, 2008.
10.
Bennett H.
,
Burke D.
,
Lutzer D.
Some Questions of Arhangel’skii on Rotoids.
Fundamenta Mathematicae
216 (2012). P. 147–161.
11.
Choban M.M.
On topological homogeneous algebras. Interim Reports of the Prague
Topolog. Symposium 2 (1987). P. 25–26.
12.
Choban M.M.
The structure of locally compact algebras.
Serdica. Bulgaricae Math.
Publ.
18 (1992). P. 129–137.
13.
Choban M.M.
Some topics in topological algebra.
Topology and Appl.
54 (1993).
P. 183–202.
14.
Engelking R.
General Topology. PWN, Warszawa, 1977.
26
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2013. № 2