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The paper considers a terminal problem for multidimensional affine systems, which
are not linearizable by a feedback. The affine system is transformed to a regular
quasicanonical form using a smooth nondegenerate change of variables within the
range of states. In addition, the terminal problem for the initial system is transformed
to the equivalent terminal problem for the system of a quasicanonical form. A method
of solving the terminal problems is proposed for the quasicanonical systems, which
is based on a concept of dynamics inverse problems generalization. The sufficient
condition for applying the proposed method is proved. The numerical procedure of
solving the terminal problems for the systems of a quasicanonical form is proposed.
There is an example of solution development of a terminal problem for a sixth-order
system using the above-mentioned method. The obtained results may be used for
solving problems of terminal control over technical systems.
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Introduction. Equivalent transformations of the systems with a control
provide many opportunities for solving various control theory problems.
Papers [1–3] present methods of controllability research, construction of
reachability sets, solving the problems of stabilization, and the terminal
problems based on the system transformation to certain canonical forms.
In this paper, the issue of terminal problems solution to the affine systems
is considered. Different approaches to this issue can be found in [1, 4, 5–9].
Papers [1, 4] describe methods of terminal problems solutions of the affine
systems, which are linearizable by a feedback, i.e. the systems that are
converted to linear controlled systems by a smooth nondegenerate change
of variables and a reversible change of controls. The methods for solving the
terminal problems of the linear controlled systems are well known and are
based on the application of the concept of dynamics inverse problems [10].
Nowadays, one of the most important challenges is the development of
methods for solving the terminal problems of the systems, which are not
linearizable by a feedback. Papers [5–8] set out the methods for solving
the terminal problems for such systems. However, these methods cover a
relatively small class of systems; the range of applicability of such methods
imposes severe restrictions on system dimensions. A special kind of the
system vector fields is often used. Thus, the issue of solving the terminal
problems for the affine systems, which are not linearizable by a feedback
is relevant. The present paper is dedicated to this problem.

Let us consider the following problem. For an affine system

ẋ = F (x) +
m∑

j=1

Gj(x)uj; (1)
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x = (x1, . . . , xn)
T ∈ Rn, u = (u1, . . . , um)

T ∈ Rm;

F (x) = (F1(x), . . . , Fn(x))
T, Gj(x) = (G1j(x), . . . , Gnj(x))

T;

Fi(x), Gij(x) ∈ C
∞(Rn), i = 1, n, j = 1,m,

which is not linearizable by a feedback, it is required to find such continuous
controls u1 = u1(t), . . . , um = um(t), t ∈ [0, t∗] that for given time t∗ can
transform system (1) from the initial state x(0) = x0 to the final state
x(t∗) = x∗.

Transformation of the system to a quasicanonical form. The
following theorem [11] sets the necessary and sufficient conditions under
which system (1) is transformed to a quasicanonical form

żi1 = z
i
2;

. . . . . . . . . . . . . . . .

żiri−1 = z
i
ri
;

żiri = fi(z
1, . . . , zm, η) +

m∑

j=1

gij(z
1, . . . , zm, η)uj, i = 1,m;

η̇ = q(z1, . . . , zm, η);

(2)

r1 + . . .+ rm = n− ρ, z
i = (zi1, . . . , z

i
ri
)T, η = (η1, . . . , ηρ)

T;

q(z1, . . . , zm, η) = (q1(z
1, . . . , zm, η), . . . , qρ(z

1, . . . , zm, η))T.

In the formulation of the theorem, vector fields are used

F =
n∑

i=1

Fi(x)
∂

∂xi
, Gj =

n∑

i=1

Gji(x)
∂

∂xi
, j = 1,m,

which one-to-one correspond to system (1) in the range of states Rn and
the vector fields ad0FGj = Gj , ad

k
FGj = [F, ad

k−1
F Gj], k = 1, 2, . . ., where

[X,Y ] is a commutator of the vector fields X and Y.
Theorem 1. For the transformation of the affine system (1) on the set

Ω ⊆ Rn to a quasicanonical form (2) it is necessary and sufficient to have
the following features:
1) functions ϕi(x) ∈ C∞(Ω), i = 1,m, satisfying the system of the

first-order partial differential equations in the set Ω

adkFGjϕi(x) = 0, k = 0, ri − 2, i, j = 1,m, x ∈ Ω;

2) functions ϕn−ρ+l(x) ∈ C∞(Ω), l = 1, ρ that for all x ∈ Ω

Gjϕn−ρ+l(x) = 0, j = 1,m, l = 1, ρ
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and mapping Φ : Ω→ Φ(Ω), prescribed by the system of functions

zik = F
k−1ϕi(x), k = 1, ri, i = 1,m;

ηl = ϕn−ρ+l(x), l = 1, ρ,

was a diffeomorphism.
In variables z1, . . ., zm, η, system (1) has a quasicanonical form (2). If

the matrix of the coefficients in system controls (2)

g(z1, . . . , zm, η) =






g11(z
1, . . . , zm, η) . . . g1m(z

1, . . . , zm, η)
...

. . .
...

gm1(z
1, . . . , zm, η) . . . gmm(z

1, . . . , zm, η)






is nondegenerated on the set Φ(Ω), then system (2) is called regular on the
set Φ(Ω).

We will assume that system (1) satisfies the conditions of theorem 1,
while Φ(Ω) = Rn. Then system (1) will be transformed to an equivalent
of a quasicanonical form (2), which is determined on the whole range of
states, and the terminal problem for system (1) — to the equivalent terminal
problem for system (2): to find continuous controls u1 = u1(t), . . . , um =
= um(t), t ∈ [0, t∗], transforming system (2) for time t∗ from the initial
state

Φ(x0) = (z
1
0 , . . . , z

m
0 , η0) (3)

to the final state
Φ(x∗) = (z

1
∗ , . . . , z

m
∗ , η∗). (4)

Controls u1 = u1(t), . . . , um = um(t), which are the solution to problem
(3), (4) for system (2), simultaneously constitute the solution to the initial
terminal problem for system (1). In this connection, we will consider
terminal problem (3), (4) for system (2).

The solution to the terminal problem for the system of a quasicano-
nical form. Paper [9] describes the following necessary and sufficient
condition for the existence of the terminal problem solution for a regular
system of a quasicanonical form.

Theorem 2. For the continuous controls u1 = u1(t), . . . , um = um(t),
t ∈ [0, t∗] to exist, which are the solution of terminal problem (3), (4)
for regular system (2), it is necessary and sufficient for the functions
Bi(t) ∈ Cri([0, t∗]), i = 1,m to exist, and:

1) vector-functions Bi(t) =
(
Bi(t), B

′
i(t), . . . , B

(ri−1)
i (t)

)T
satisfies the

conditions
Bi(0) = z

i
0, Bi(t∗) = z

i
∗;
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2) the solution η(t) of the Cauchy problem

η̇ = q(B1(t), . . . , Bm(t), η), η(0) = η0 (5)

is determined at all t ∈ [0, t∗] and satisfies the condition

η(t∗) = η∗. (6)

In paper [9] it is also shown that the control u = u(t), which is the
solution to the terminal problem, is found according to the equality

u(t) = g−1(B1(t), . . . , Bm(t), η(t))×

×




B
(r1)
1 (t)− f1(B1(t), . . . , Bm(t), η(t))

. . .

B
(rm)
m (t)− fm(B1(t), . . . , Bm(t), η(t))



 ,
(7)

while the relations zi = Bi(t), i = 1,m, η = η(t), t ∈ [0, t∗] are the
parametric equations of that phase trajectory of system (2) which connects
states (3) and (4).

According to [9], we shall find functions B1(t), . . . , Bm(t) from
theorem 2 in the form of

Bi(t) = bi(t) + cidi(t), i = 1,m,

where bi(t), di(t) ∈ Cri([0, t∗]), the vector-functions

bi(t) =
(
bi(t), b

′
i(t), . . . , b

(ri−1)
i (t)

)T

satisfy the conditions

bi(0) = z
i
0, bi(t∗) = z

i
∗, i = 1,m,

while the vector-functions di(t) =
(
di(t), d

′
i(t), . . . , d

(ri−1)
i (t)

)T
satisfy the

conditions
di(0) = 0, di(t∗) = 0, i = 1,m, (8)

It is necessary to find ci ∈ R.
It is possible, for example, to take interpolation polynomials of 2ri− 1

degrees as functions bi(t), i = 1,m, and to take any functions, for which
correlations (8) are fulfilled as functions di(t), i = 1,m. With the given
set of functions Bi(t), condition 1 of theorem 2 is fulfilled for any ci ∈ R.
Numbers ci should be selected in such a way that condition 2 of theorem 2
was fulfilled. If there exist such numbers as c1 = c1∗, . . . , cm = cm∗ that the
solution η(t) of the Cauchy problem (5) satisfies the additional requirement
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η(t∗) = η∗, then, for functions Bi(t) = bi(t) + ci∗di(t), i = 1,m, all
conditions of theorem 2 are fulfilled and, thus, terminal problem (3), (4)
for system (2) has got a solution.

Let us assume that ρ 6 m. The Euclidean norm will be considered as the
vector norm from the spaceRρ and ρ×ρ-matrices. Let r = max{r1, . . . , rρ}.
For all pairs of the indices l и j, where l ∈ {2, . . . , r}, j ∈ {1, . . . , ρ},
l > rj , we will introduce the formally additional variables zjl . Let us denote
zl = (z

1
l , . . . , z

ρ
l )
T, l = 1, r. According to the definition, let us assume that

if l > rj , then ∂qi/∂z
j
l = 0 for all i = 1, ρ. Let us take ∂q/∂zl for denoting

ρ× ρ-matrices with elements ∂qi/∂z
j
l , i, j = 1, ρ.

Irrespective of the number i, we specify the functions di(t) with the
formula

di(t) ≡ d(t) =
tr(t∗ − t)r

t∗∫

0

tr(t∗ − t)rdt

. (9)

We will denote L = max
[0,t∗]
{d(t) + |d′(t)|+ |d′′(t)|+ . . .+ |d(r−1)(t)|}.

Let us prove the following auxiliary statement.
Lemma 1. Let P (t), R(t) be ρ × ρ-matrices with elements Pij(t),

Rij(t) ∈ C[0, t∗], and there exists such a number λ ∈ R, with all y ∈ Rρ,
t ∈ [0, t∗], the inequality is fulfilled:

(P (t)y, y) 6 λ‖y‖2. (10)

Then ρ× ρ-matrix W (t), which is the solution to the Cauchy problem

Ẇ = P (t)W +R(t), W (0) = 0, (11)

satisfies the inequality

‖W (t∗)‖ 6 e
λt∗

t∗∫

0

‖R(t)‖e−λtdt. (12)

JWe denote j-th matrix columnsW (t) and R(t) withWj(t) and Rj(t),
respectively. Then the system Ẇ = P (t)W + R(t) can be written in the
following form:







Ẇ1
Ẇ2
. . .

Ẇρ





 =








P (t) 0 . . . 0
0 P (t) . . . 0
...

...
. . .

...
0 0 . . . P (t)














W1
W2
. . .
Wρ





+







R1(t)
R2(t)
. . .
Rρ(t)





 .
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Let us denote

V (t) =







W1(t)
W2(t)
. . .
Wρ(t)





 , Q(t) =








P (t) 0 . . . 0
0 P (t) . . . 0
...

...
. . .

...
0 0 . . . P (t)







, S(t) =







R1(t)
R2(t)
. . .
Rρ(t)







and put down Cauchy problem (11) in the form of

V̇ = Q(t)V + S(t), V (0) = 0.

As the Euclidean norms of the matrixes W (t) and R(t) coincide with the
Euclidean norms of the vectors V (t) and S(t), then, to prove inequality
(12) it is sufficient to show that

‖V (t∗)‖ 6 e
λt∗

t∗∫

0

‖S(t)‖e−λtdt. (13)

As it follows from inequality (10), for any t ∈ [0, t∗] and V =
= (V T1 , . . . , V

T
ρ )
T ∈ Rρ

2
, where Vj ∈ Rρ, the estimation

(Q(t)V, V ) = (P (t)V1, V1) + . . .+ (P (t)Vρ, Vρ) 6

6 λ‖V1‖2 + . . .+ λ‖Vρ‖2 = λ‖V ‖2.
(14)

is true.
Let us use (14) to prove inequality (13). Note that, if V (t∗) = 0,

then ‖V (t∗)‖ = 0 and the correctness of inequality (13) results from the
non-negativity of its right part.

If V (t∗) 6= 0, then we can denote as t0 the exact upper boundary of
these t from the range [0; t∗) , for which V (t) = 0. Then V (t0) = 0 , for
all t ∈ (t0; t∗) the inequality V (t) 6= 0 is fulfilled. In the range (t0; t∗) we

can calculate and estimate
d

dt
‖V ‖, using inequality (14) and the Cauchy –

Bunyakowsky inequality:

d

dt
‖V ‖ =

(V, V̇ )

‖V ‖
=
1

‖V ‖
[(Q(t)V, V ) + (S(t), V )]6

6
λ‖V ‖2

‖V ‖
+

(

S(t),
V

‖V ‖

)

6λ‖V ‖+ ‖S(t)‖.

Thus, in the range (t0; t∗) the function ‖V (t)‖ satisfies the differential
inequality

d

dt
‖V ‖6λ‖V ‖+ ‖S(t)‖.
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The following function is the solution to the differential equation v̇ = λv+
+ ‖S(t)‖ with the initial condition v(t0) = 0:

v(t) = eλt
t∫

t0

‖S(τ)‖e−λτdτ,

That is why, with all t ∈ [t0, t∗] inequality (12) is true:

‖V (t)‖6eλt
∫ t

t0

‖S(τ)‖e−λτdτ

and, consequently,

‖V (t∗)‖6e
λt∗

t∗∫

t0

‖S(t)‖e−λtdt. (15)

From the non-negativity of the subintegral function in the right part of
inequality (15) we have

t∗∫

t0

‖S(t)‖e−λtdt6
∫ t∗

0

‖S(t)‖e−λtdt,

and with this, we get inequality (13) from (15).
Now we can prove the main result.
Theorem 3. Let us assume the following:

1) q(z1, . . . , zm, η) =
r∑

i=1

Aizi+Kη+ p(z
1, . . . , zm) where A1, . . . , Ar,

K are ρ× ρ-matrixes;
2) matrixM = A1+KA2+K2A3+ . . .+Kr−1Ar is nondegenerated;
3) there is such ε > 0, that for all i = 1, r and (z1, . . . , zm) ∈ Rn−ρ

the inequalities ‖∂p/∂zi‖6ε are fulfilled;
4) λ is the largest proper number of the matrix (P + PT)/2, where

P =M−1KM ;

γ =






(‖M−1‖εL+ ‖P‖)t∗, if λ = 0;

(‖M−1‖εL+ ‖P‖)
eλt∗ − 1
λ

, if λ 6= 0.
(16)

If γ < 1, then terminal problem (3), (4) for system (2) has got a solution.
J Let us assume cρ+1 = . . . = cm = 0, then denote the vector with

unknown parameters by c = (c1, . . . , cρ)T. Then Cauchy problem (5) will
take the form of

η̇ = q(b1(t) + c1d1(t), . . . , bρ(t) + cρdρ(t), bρ+1(t), . . . , bm(t), η);
η(0) = η0.

(17)
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Let us prove that the parameter c∗ ∈ Rρ exists, and the solution η(t, c)
of Cauchy problem (17) satisfies the condition η(t∗, c∗) = η∗. If bi(t),
di(t) ∈ Cri([0, t∗]), i = 1,m, and q(z1, . . . , zm, η) ∈ C∞(Rn), then the
vector-function η(t, c) is differentiable using the parameter c, while the
matrix function ν = ∂η/∂c satisfies the system of equations (13):

ν̇ = Kν +
r∑

i=1

(

Ai +
∂p

∂zi

)

d(i−1)(t); ν(0) = 0, (18)

which is obtained as the result of system (17) differentiation with the
parameter c.

Now we introduce the mapping Ψ : Rρ → Rρ, which assigns to
each parameter c ∈ Rρ, the value η(t∗, c) ∈ Rρ of the η(t, c) solution
of Cauchy problem (17) at a moment of time t∗. Let us show that while
satisfying the theorem’s conditions, there exists the parameter c∗, for which
the equality Ψ(c∗) = η∗ is fulfilled. For this, we will introduce the mapping
v : Rρ → Rρ, functioning according to the rule

v(c) = c−M−1(Ψ(c)− η∗).

The equality Ψ(c∗) = η∗ is equivalent to the fact that the parameter c∗
is a fixed point of the mapping v. To prove the existence of the fixed point
in the mapping v, we prove that the mapping v is compressing. The Jacobi
matrix of the mapping v has a form of v′(c) = E−M−1Ψ′(c), where E is a
unity ρ×ρ-matrix; Ψ′(c) is the Jacobi matrix of the mapping Ψ. According
to the definition of the mapping Ψ, Ψ′(c) = ν(t∗), then

v′(c) = E −M−1ν(t∗).

Let us denote D(t) =

t∫

0

d(τ)dτ . The choice of the functions d(t) in

formula (9) ensures that with t ∈ [0, t∗] both the inequality 06D(t)61 and
the equality D(t∗) = 1 are fulfilled. Let us consider the matrix function

W (t) = D(t)E +
r−1∑

i=1

d(i−1)(t)Ni −M
−1ν(t), (19)

here Ni is ρ × ρ-matrices, which will be chosen later. From the equations
D(0) = 0, d(0) = 0, . . ., d(r−2)(0) = 0, ν(0) = 0, it follows thatW (0) = 0,
and from the equations D(t∗) = 1, d(t∗) = 0, . . . , d(r−2)(t∗) = 0 —
W (t∗) = E − M−1ν(t∗). Having shown that ‖W (t∗)‖6γ < 1, thereby
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we can write the inequality ‖v′(c)‖6γ < 1. Therefore, we can prove that
the mapping v is compressing. We calculate Ẇ with the help of (18):

Ẇ = d(t)E +
r∑

i=2

d(i−1)(t)Ni−1 −M
−1ν̇ =

= d(t)E +
r∑

i=2

d(i−1)(t)Ni−1 −M
−1

[

Kν +
r∑

i=1

(

Ai +
∂p

∂zi

)

d(i−1)(t)

]

.

(20)
Taking (19) into consideration, we express ν(t) in terms of W (t):

ν(t) =M

(

D(t)E +
r−1∑

i=1

d(i−1)(t)Ni −W (t)

)

,

substitute the received relation in (20). As a result, we have the equality

Ẇ = PW + [E −M−1A1 − PN1]d(t)+

+
r−1∑

i=2

[Ni−1 −M
−1Ai − PNi]d

(i−1)(t)+

+[Nr−1 −M−1Ar]d(r−1)(t)−M−1
r∑

i=1

∂p

∂zi
d(i−1)(t)− PD(t).

(21)

Now we choose matrices N1, . . . , Nr−1 from the condition

E −M−1A1 − PN1 = 0;
Ni−1 −M−1Ai − PNi = 0, i = 2, r − 1;
Nr−1 −M−1Ar = 0.

(22)

With a direct substitution, we can show that the solution to system (22) of
the matrix equations is the matrices

N1 =M
−1(A2 +KA3 + . . .+K

r−2Ar);
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nr−2 =M
−1(Ar−1 +KAr);

Nr−1 =M
−1Ar.

(23)

Let us assume that the matrices Ni are specified by formulae (23). Then
equality (21) will take the form of

Ẇ = PW +R(t),

where

R(t) = −M−1
r∑

i=1

∂p

∂zi
d(i−1)(t)− PD(t).
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In accordance with condition 3 of the theorem, for all y ∈ Rρ the inequality
(Py, y)6λ‖y‖2 is fulfilled, therefore, according to Lemma 1, the solution
W (t) of the Cauchy problem

Ẇ = PW +R(t), W (0) = 0

satisfies the inequality

‖W (t∗)‖6e
λt∗

t∗∫

0

‖R(t)‖e−λtdt. (24)

Using the triangle inequality, condition 3 of the theorem and the inequality
06D(t)61, fulfilled with allt ∈ [0, t∗], we obtain

‖R(t)‖ =

∥
∥
∥
∥
∥
M−1

r∑

i=1

∂p

∂zi
d(i−1)(t) + PD(t)

∥
∥
∥
∥
∥
6

6‖M−1‖
r∑

i=1

∥
∥
∥
∥
∂p

∂zi

∥
∥
∥
∥ |d

(i−1)(t)|+ ‖P‖D(t)6

6‖M−1‖
r∑

i=1

ε|d(i−1)(t)|+ ‖P‖6‖M−1‖εL+ ‖P‖.

With regard to this estimation and notation (16), inequality (24) is taking
the form of

‖W (t∗)‖6e
λt∗

t∗∫

0

(‖M−1‖εL+ ‖P‖)e−λtdt = γ.

If γ < 1, then ‖v′(c)‖ = ‖W (t∗)‖6γ < 1 and, consequently, the mapping
v is compressing. Thus, if the theorem conditions are satisfied, the mapping
v is compressing and has a fixed point c∗. With c1 = c1∗, . . . , cρ = cρ∗,
cρ+1 = 0, . . . , cm = 0, the solution η(t) of Cauchy problem (5) satisfies the
condition η(t∗) = η∗. The functions

B1(t) = b1(t) + c1∗d1(t), . . . , Bρ(t) = bρ(t) + cρ∗dρ(t),

Bρ+1 = bρ+1(t), . . . , Bm(t) = bm(t)

satisfy all the conditions of theorem 2, hence terminal problem (3), (4) for
system (2) has got a solution.

Numerical procedure. The method of construction of terminal prob-
lem (3) solution, (4) for system (2) results from theorem 3 proving. Let us
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take a random number c(0) ∈ Rρ and build a sequence of approximations
{c(j)} according to the rule

c(j+1) = c(j) −M−1(Ψ(c(j))− η∗), j = 0, 1, . . . (25)

In order to determine the value Ψ(c(j)), it is necessary to find the solution
η(t, c(j)) to the Cauchy problem

η̇ = q(b1(t) + c
(j)
1 d1(t), . . . , bρ(t) + c

(j)
ρ dρ(t), bρ+1(t), . . . , bm(t), η);

η(0) = η0.

Then Ψ(c(j)) = η(t∗, c(j)).
As the mapping v is compressing, the sequence {c(j)} converges to the

fixed point c∗ of the mapping v. Thereby, the estimation is true

‖c(j) − c∗‖6
γj

1− γ
‖c(1) − c(0)‖. (26)

It follows from (25) that

Ψ(c(j))− η∗ =M(c
(j+1) − c(j)),

hence, using the triangle inequality and estimation (26), we obtain

‖Ψ(c(j))− η∗‖6‖M‖‖c(j+1) − c(j)‖ = ‖M‖‖c(j+1) − c∗ + c∗ − c(j)‖6

6‖M‖‖c(j+1) − c∗‖+ ‖M‖‖c∗ − c(j)‖6
‖M‖
1− γ

(γj+1 + γj) ‖c(1) − c(0)‖ =

=
(1 + γ)γj

1− γ
‖M‖‖c(1) − c(0)‖.

Having chosen the number J from the condition

(1 + γ)γJ

1− γ
‖M‖‖c(1) − c(0)‖6σ,

where σ > 0 is a given accuracy, we try to obtain the inequality fulfilment

‖Ψ(c(J))− η∗‖6σ. (27)

The vector-functions

z1 = b1(t) + c
(J)
1 d1(t), . . . , z

ρ = bρ(t) + c
(J)
ρ dρ(t),

zρ+1 = bρ+1(t), . . . , z
m = bm(t); η = η(t, c

(J)), t ∈ [0, t∗],
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specify the t-parameter curve in the range of system (2) conditions,
connecting states (3) and (4). The control implementing this trajectory as
system (2) trajectory, can be found using formula (7), if we assume that

B1(t) = b1(t) + c
(J)
1 d1(t), . . . , Bρ(t) = bρ(t) + c

(J)
ρ dρ(t),

Bρ+1 = bρ+1(t), . . . , Bm(t) = bm(t); η(t) = η(t, c
(J)).

Example. Let us consider the system

żi1 = z
i
2;

żi2 = ui, i = 1, 2;
η̇1 = −0.1η2 + z11 + z

2
2 + 0.08 cos z

1
2 ;

η̇2 = 0.1η1 + z
2
1 + z

1
2 − 0.08 sin z

2
2

(28)

with the following boundary conditions:

z11(0) = 0, z
1
2(0) = 0, z

2
1(0) = 0, z

2
2(0) = 0, η1(0) = 0, η2(0) = 0,

z11(2) = −4, z
1
2(2) = −8, z

2
1(2) = 0, z

2
2(2) = 4, η1(2) = −5, η2(2) = 4.

For this task t∗ = 2, m = 2, ρ = 2, r1 = r2 = 2, z1 = (z11 , z
2
1)
T,

z2 = (z
1
2 , z

2
2)
T,

A1 =

(
1 0
0 1

)

, A2 =

(
0 1
1 0

)

, K =

(
0 −0, 1
0, 1 0

)

,

p(z1, z2) =

(
0.08 cos z12
−0.08 sin z22

)

, M = A1 +KA2 =

(
0.9 0
0 1.1

)

,

M−1 =

(
10/9 0
0 10/11

)

, P =M−1KM =

(
0 −11/90
9/110 0

)

,

∂p

∂z1
=

(
0 0
0 0

)

,
∂p

∂z2
=

(
−0.08 sin z12 0

0 −0.08 cos z22

)

.

Since ‖∂p/∂z1‖ = 0, а ‖∂p/∂z2‖60.08
√
2, we can assume ε = 0.08

√
2

as the number ε from condition 3 of theorem 3. Matrix (P + PT)/2 has
the form of

1

2
(P + PT) =

(
0 −2/99

−2/99 0

)

,

Its largest proper value λ = 2/99.
Let us check the fulfilment of theorem 3 conditions. The function d(t),

built with formula (9), has the form of d(t) =
15

16
t2(2− t)2, therefore,

d′(t) =
15

4
t(t− 1)(t− 2); L = max

[0,2]
{d(t) + |d′(t)|} 6 1.95.
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In connection with the fact that γ = (‖M−1‖εL + ‖P‖)
eλt∗ − 1
λ

≈

≈ 0.947 < 1, the condition of theorem 3 has been satisfied and the
terminal problem under consideration has got a solution.

Now we select the function b1(t) = −t3 + t2 as the function b1(t),
which satisfies the conditions

b1(0) = 0, b
′
1(0) = 0, b1(2) = −4, b

′
1(2) = −8,

and the function b2(t) = t3 − 2t2 as the function b2(t), which satisfies the
conditions

b2(0) = 0, b
′
2(0) = 0, b2(2) = 0, b

′
2(2) = 4.

Let us specify the initial approximation for the vector of parameters
c(0) = (0; 0)T and the accuracy σ = 0.001. Let us build the sequence
of approximations {c(j)} using formula (25), assuming that η∗ = (−5; 4)T,
Ψ(c(j)) = η(t∗, c

(j)), where η(t, c(j)) = (η1(t, c(j)), η2(t, c(j)))T, which is
the solution to the Cauchy problem:

η̇1 = −0.1η2 + b1(t) + c
(j)
1 d(t) + b

′
2(t)+

+c
(j)
2 d

′(t) + 0.08 cos(b′1(t) + c
(j)
1 d

′(t);

η̇2 = 0.1η1 + b2(t) + c
(j)
2 d(t) + b1′(t)+

+c
(j)
1 d

′(t)− 0.08 sin(b′2(t) + c
(j)
2 d

′(t);
η1(0) = 0, η2(0) = 0,

being determined on each iteration using the Runge – Kutta method of the
fourth order. The calculations showed that inequality (27) can be fulfilled
with J = 6, hence the point c(6) = (−3.287; 8.933)T is the fixed point of
the mapping v with the accuracy σ. The functions

z11 = b1(t) + c
(6)
1 d(t), z

1
2 = b

′
1(t) + c

(6)
1 d

′(t), z21 = b2(t) + c
(6)
2 d(t),

z22 = b
′
2(t) + c

(6)
2 d

′(t); η1 = η1(t, c
(6)), η2 = η2(t, c

(6))

specify the t-parameter curve in the range of system (28) conditions,
connecting the initial and final system statuses. The controls u1 = b′′1(t) +
+ c

(6)
1 d

′′(t), u2 = b′′2(t) + c
(6)
2 d

′′(t) realize this curve as the trajectory of
system (28) and are a solution of the terminal problem under consideration.
Functional relations z11(t), z

2
1(t), z

1
2(t), z

2
2(t), η1(t), η2(t), u1(t), u2(t) are

shown in the picture.
Conclusion. The terminal problem for the affine systems, which are

not linearizable by a feedback, is considered. It is supposed that using
a smooth nondegenerate change of variables within the range of states,
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Functions z11(t)z11(t)z11(t), z
2
1(t)z21(t)z21(t) (а), z12(t)z12(t)z12(t), z

2
2(t)z22(t)z22(t) (b), η1(t)η1(t)η1(t), η2(t)η2(t)η2(t) (c), and u1(t)u1(t)u1(t), u2(t)u2(t)u2(t) (d)

the system can be transformed to a regular quasicanonical form. Along
with this, the terminal problem for the initial system is transformed to the
equivalent terminal problem for the system of a quasicanonical form. For
a quasicanonical system, the sufficient condition of the existence of the
terminal problems solution is proved. A method for solving the terminal
tasks is proposed on the basis of this condition. An example is given of
the terminal task solution development using the method proposed for the
sixth-order system.

The work was supported by the Russian Foundation for Basic Research
(grants 14-07-00813, 13-07-00736).
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