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Introduction. The investigation of asymptotic behavior of solutions
to nonlinear differential equations near the boundaries of their domain
and the classification of all possible solutions to this equations is one
of the major problems in qualitative theory of differential equations.
This problem is one of the most important because there are no general
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methods for investigation of qualitative properties of solutions to nonlinear
differential equations. Note that Emden-Fowler equation appears for
the first time in [1]. Its physical origin is also described in [2]. This
equation was investigated in detail in the books [3, 4], and later in [5].
See also [6, 7] and references. Asymptotic properties of solutions to
different generalizations of this equation were investigated in [8-35]. The
results concerning asymptotic behavior of solutions to nonlinear ordinary
differential equations is used to describe the properties of solutions to
nonlinear partial differential equations. See, for example, [36-40].

In this article the asymptotic classification of all possible solutions to
the fourth order Emden — Fowler type differential equations

y™V(x) +poly" T y(x) =0, k>1, py>0 (1)
and
y™V(x) —poly/" M y(x) =0, k>1, py>0 )

is given.
The asymptotic classification of all possible solutions to the third order
Emden — Fowler type differential equations

y" (@) + p(@) [y y(x) =0, k>1, p(z) >0 3)
is described.

For fourth-order nonlinear equations, the oscillatory problem was
investigated in [10, 13, 14, 17, 21, 28, 29, 31, 33, 35], in linear case —
in [41].

Phase Sphere. Note that if a function y(x) is a solution to equation
(1), the same is true for the function

z(z) = Ay(Bzx + C), “)
where A # 0, B > 0, and C are any constants satisfying
A = B (5)

Indeed, we have
V(x) +po |2 2(x)= ABYY (Bz + O)+
+po |Ay(Bz + C)|" " Ay(Bz + C) =
= Ay™(Bz +C) (B*~ |A]) = 0.
Any non-trivial solution y(z) to equation (1) generates a curve
(y(z), 9 (z),y"(z),y"(z)) in R*\{0}. Let us introduce in R*\{0} an
equivalence relation such that two solutions connected by (4), (5) generate

equivalent curves, i.e. the curves passing through equivalent points (may
be for different x).
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We assume that points (yo, y1, ¥, y3) and (2o, 21, 22, z3) in R*\ {0} are
equivalent if there exists a positive constant A such that z; = \*7¢=Ly
j=0,1,2,3.

The factor space obtained is homeomorphic to the three-dimensional
sphere S = {y € R*: y2 +y? + 45+ y2 = 1}. On this sphere there is
exactly one representative of each equivalence class because for any
point (yo,y1,y2,y3) € R*N\{0} the equation A8y + \2F+0y2 4 \Ikt4e2 4
+ A6**2y2 — 1 has exactly one positive oot \.

It is possible to construct another hyper-surface in R* with a single
representative of each equivalence class, namely,

3
Ez{yeW:ZryjlW:l}- ©6)
=0
We define g : R*\{0} — S and ®p : R*\ {0} — E as mappings taking
each point in R*\{0} to the equivalent point in S or E. Note that the
restrictions ®g|p and ®g|gs are inverse homeomorphisms.

Lemma 1. There is a dynamical system on the sphere S* such that
all its trajectories can be obtained by the mapping ®g from the curves
generated in R*\{0} by nontrivial solutions to equation (1). Conversely,
any nontrivial solution to equation (1) generates in R*\{0} a curve whose
image under ®g is a trajectory of the above dynamical system.

<« First we define on the sphere S® a smooth structure using an atlas
consisting of eight charts.

The two semi-spheres defined by the inequalities yo > 0 and yy < 0 are
covered by the charts with the coordinate functions (respectively u], ug,

+ — _ _ + _4+5(k—1)
uy and uy, uy, uy) defined by the formulae uj" = y; |yo| T sgnypo,
j=1,23.
The semi-spheres defined by the inequalities y; > 0 and y; < 0 are

covered by the charts with the coordinate functions (respectively vy, vy,

+ - — —
v; and vy, v, , v5 ) defined as

Atj(k—1)

vy =yilyl B sgny,  j=0,2,3.

The semi-spheres defined by the inequalities y» > 0 and y, < 0 are

covered by the charts with the coordinate functions (respectively wg , wy,
4+j(k—1)

wy and wy , wi , wy ) defined as w]j.E =y; |ya|” 2 sgnys, j =0,1,3.
Finally, the semi-spheres defined by the inequalities y; > 0 and y3 < 0

are covered by the charts with the coordinate functions (respectively gg,
4+j(k=1)

gf? g;_ and g()_a 91_7 92_) defined as gj: =Y |y3|7 Skt sgnys, ] = 07 1a 2.
Note that each of these coordinate functions can be defined by its
own formula on the whole corresponding semi-space (y;=0) and it takes
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equivalent points to the same value. This fact facilitates description of
the trajectories generated on S® by solutions to equation (1). To be more
precise, by their restrictions on the intervals where some derivative has
constant sign.

E.g., when a solution is positive, the trajectory generated can be
described by the following differential equations:

alu1 e 433n _k:+3/2||, k7
- y gny — ——y"y
k=1 k+3
' (- )
duy . _2kt2 2k + 2 kit
2 4 _ / // _
= Y" 1yl sgny — — —y'y" [y
k-1 2k + 2
— I (- % uru;) ;
du Berl 3k 4 L 252
dr —Po |y| T T4 y" |yl =

k-1 3k+1
-7 (-m- 2 )

Parameterizing itby ¢, = / ly| 4 4 dx, we obtain its internal description
x0
in terms of ;' :
+
dui + k+3 .

dtu - u2 4 ul )
dus 2k 4 2

du 3k +1
e B

The same equations appear for (u;, uy ,uz ). Similar calculations yield
equations for other charts:

dUS_L 4 4 4 d'wat + 4 + +
-1 — . 70 = .

dt, k302 dt, 1 9p 4ot

dvy o 2k42 ., dwp k43 Lo

dt, R dt, 2% + 21

dvi dwT

dt3 = po‘v0| sgnvoi # = p0|w0| sgnwoi
C3k+1 o 3k+1 o
k+3 2 37 2k+2 3 )
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alg(j)E 4 k+1

d_tq :gl 3k+1p0‘0|

dgi’ + k+3

o, =% 3k+1pogl o | sengg
+

doy _y 22 pogs |oi | sengq

dt, 3k + 1

Using a partition of unity one can obtain a dynamical system on the
whole sphere S? to describe all trajectories generated by nontrivial solutions
to equation (1). »

Typical and Non-Typical Solutions. Now we consider the space R*
as the union of its 16 = 2% closed subsets defined according to different
combinations of signs of the four coordinates. Denote these sets by

+
+
+ | C R*, where each sign £ can be substituted by -+, or —, or 0 (for
+

boundary points). For example,

+
+
0 :{yER43yOZan1207y2:073/3§0;}-

Besides, let €2 and €2, denote respectively

[+ ] [ 4] + + - - - -
- - - + + + + -
+ U+ |u|l = |ul=|u|—=]u|—=|u|l+]|u|+
- + + + + - - -
and
+ 1 [+] [+ + - - - -
+ + + - - - - +
+ Ul + (Ul = |u|l = |u| = (Ul —=|u|+|U|+
+ - - - - + + +

Note, that the sets 2_ and €2, cover the whole space R?, intersect
only along their common boundary, and can be obtained from each other
uSing the mapplng (y07 Y1, Y2, yS) € R* - (y07 —Y1,Y2, _y3> S R47 which
corresponds to changing the sign of the independent variable (z — —x).
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Lemma 2. The sets Q_NS3, Q. NS Q_NE, and Q. NE are
homeomorphic to the solid torus.

« It is sufficient to consider €2, N S®. The set €1 is the union of its
two homeomorphic subsets

+ + + +
T + T —
Que=|+|U|+|ul|l-JuUul| -
+ — — —
and
— — - +
Qi =| - Ju|l -|u|l+|u|+
— + + +

In order to describe the set 0, | NS?, we use the stereographic projection
S3\{(-1,0,0,0)} — R? (Fig. 1).

The image of €, N S* under this projection is contained in the
ball of radius 2 and is equal to the union of its two quarters, which is
homeomorphic to the 3-dimensional ball. The same is true for Q,_ N S3.

0

— ns3

The intersection (., N S*)N(Q2,_ N S3) =

++ + o
-

maps to the disjoint union of two spherical triangles (2-dimensional figures,

1 3
Y2
3

Y1

2

(Y
S

Fig. 1. Stereographic projection and its image of Q. N S3
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not their boundaries). Thus, the set 2, N S3 is homeomorphic to the pair

of two balls glued along two disjoint triangles, which is equivalent to the

solid torus. »

Lemma 3. Any trajectory in R* generated by a non-trivial solution

to (1) either completely lies inside one of the sets Q)_ and ) (i.e., in their

interior), or consists of two parts, first inside Q)_ and another inside <)

with a single point in their common boundary.

<« For the trajectories generated by solutions to equation (1), consider

all possible passages between the sets

S
+

+
+

Inside €2, the only possible passages are

[+ ] [+ ] [+ ] [+ ]
+ + +
+ — + — -
+ — _
T o o o (7)
+ — _
+ | « |+ « |-
+ + +
inside {2_ they are
[+ ] [+ ] [+ ] [+ ]
+ |« |+ « |-
— + +
R - - T ®)
— + +
+1 = |+ = |-
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and the only possible passages between (2_ and (), are

[+ ] [+ ] [+ ] [ — ] [+ ] [+ ]
+ — — — — +
+ | +|=|-1, + |+ =]+,
— — - + + +
-] [+ ] [+ [+ ] [+ [+ ]
- - - + + +
— |~ —=-1—=-1|-1, + || —-|—=1—-1,
+ + — + + —

] - C - . B -
— + + + + —
-~ —-]1—=1+], — || —-|1=1-1,
+ + + — - —
+- __ __- -_- _- -_
+ + + — — —
+ =+ | =]+, — <+ |=|+];
- - + - - +

always from 2_ to €2, .

So, any trajectory generated by a non-trivial solution can perform only
one passage between ) and €2, , which can be only from 2_ to Q2. »

Lemma 4. There exist trajectories of all three types mentioned in
Lemma 3, namely

e trajectories lying completely in €)_;

e trajectories lying completely in € ;

e trajectories with a single passage ) — ).

<« Any solution to (1) with initial data corresponding to a point from
Q_N€2, generates a trajectory of the 3rd type. E.g., the solution with initial
data y'(0) = 0, y(0) = y"(0) = y"(0) = 1 generates a trajectory with the
passage

_|_

cQ_ — C Q.

++ + +

+
+

If there exists a solution y(z) to (1) generating a trajectory lying
completely in €2_, then the function z(z) = y(—=z) is also a solution
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to (1) and generates a trajectory completely lying in €2, . So, we have to
prove existence of a trajectory of the first type.

Assume the converse. Then any trajectory passing through a point
s € Q_ N S® must reach the boundary 9Q_ N S. Thus we obtain the
mapping QN S3 — 9Q_ N S3.

To prove its continuity we represent it as s€Q_NS* — Traj, (s,&(s)) €
€00_nNS3.

Here Traj, (s,t) is the point in S® reached at the time ¢ by the trajectory
of the dynamical system on the sphere that passed s at the time 0. The
mapping Traj, : S3 x R — S3 is continuous according to the general
properties of differential equations.

The function £ : Q_ N S3 — R gives the time ¢ at which the trajectory
passing through the given point of {2_ at ¢, = 0 reaches 0€)_. Now we
prove continuity of .

Suppose {(s1) = t; and € > 0. Then, since Traj, (s1,t1 + ¢) is inside
Q. , there exists a neighborhood U, of s; such that for any s € U, the
point Traj, (s,t; +¢) is also inside €2, . So, we have (s) < t; + ¢ for all
seUs.

Similarly, since Traj, (s1,t; —€) is inside _, there exists a neighbor-
hood U_ of s; such that for any s € U_ the point Traj, (s,t1 — ¢) is also
inside Q_, whence &(s) > t; — &.

So, forall s € U_NU, we have |{(s) — t;| < . Thus (s) is continuous
on Q_ N S3 and we have the continuous mapping 2_ N S* — 9Q_ N S3
whose restriction to 9Q_ N S? is the identity map. In other words, we
have the composition 9Q_ N S* — QN S3 — 90Q_ N S, which is
the identity map, inducing the identity map on the homology groups:
HQ(aQ_ N 53) — HQ(Q_ N 53> — HQ(aQ_ N 53)

Since Q_ N S3 and 9Q_ N S3 are homeomorphic to the solid torus
and the torus surface respectively, the above composition can be written
as Z — 0 — Z, which cannot be the identity mapping. This contradiction
proves the lemma. »

Lemma 5. Suppose y(x) is a non-trivial solution to equation (1)
maximally extended to the right. Then neither y(z) nor any of its derivatives
y' (), y"(x), y""(z) can have constant sign near the right boundary of their
domain.

< We prove it for y(z). For the derivatives the proof is just similar.

Suppose y(x) is defined on an interval (z_, ), bounded or not, and is
positive in a neighborhood of . Then y"’(x), due to (1), is monotonically
decreasing to a finite or infinite limit as * — x,. Then y"'(x) ultimately
has a constant sign. In the same way, y”(z), ¥/(x), and y(z) itself are all
ultimately monotone and have finite or infinite limits as * — z.
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Suppose z, < +oo. If either of the limits mentioned is finite, then all
other limits are finite, too, which is impossible for a maximally extended
solution. If all limits are infinite, they must have the same sign, which
contradicts to equation (1).

Now suppose . = +oo. If either of the limits mentioned is non-
zero, then all limits must be infinite and have the same sign, which
contradicts to equation (1). If all these limits are zero, then y(z), which is
ultimately positive, is decreasing to 0. Hence, y/(z) is ultimately negative
and increasing to 0. Similarly, y”(z) is ultimately positive and decreasing
to 0, ¥ (x) is ultimately negative and increasing to 0, which contradicts to
equation (1), since y(z) is ultimately positive. These contradictions prove
the lemma. »

Thus, no trajectory generated in R* by a non-trivial solution to (1) can

+
+
ultimately rest in one of the sets | =+
+

Corollary 1. All maximally extended solutions to equation (1), as well
as their derivatives, are oscillatory near both boundaries of their domains.

Note that according to Lemma 3 we can distinguish two types of
asymptotic behavior of oscillatory solutions to equation (1), near the right
boundaries of their domains.

Definition 1. An oscillatory solution to equation (1) is called typical
(to the right) if ultimately this solution and its derivatives change their
signs according to scheme (7), and non-typical if according to (8).

Asymptotic Behavior of Typical Solutions. This section is devoted
to the asymptotic behavior of typical (to the right) solutions to equation
(1), i.e. those generating trajectories ultimately lying inside €2, .

Since such a trajectory ultimately admits only the passages shown in (1),
there exists an increasing sequence of the points z(' < xy < zj < xy <
<y <af <z <z < ... such that y(z;) = y'(z)) = y'(2]) =
=y"(2]) =0 (j =1,2,...), and each point is a zero only for one of the
functions y(z), y'(v), y"(x), y" (z) (Fig.2). The points z;, 2%, =7, x}’ will
be called the nodes of the solution y(z).

For solutions generating trajectories completely lying inside 2., the
sequences of their nodes can be indexed by all integers (negative ones,
t00).

Lemma 6. Any typical solution y(x) to equation (1) satisfies at its
nodes the following inequalities:

" "

‘y(x;)} < |y(:cj+1)| < ’y(xj—&-l)‘ < }y(:l:;+1)|; )
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Vi3 /

X X X X e x4
Fig. 2. Zeroes of the derivatives of a typical solution
' @) < 1y ()] < |y (=40)] < [y (@) (10)
|y ()] < [y" (=] < " ()] < |y" (@) (11)
ly" (2;) |< " (@ )| < |y" (20| < " (z00)]- (12)
« Indeed,
it

kT 1 (}Z/(x;)|k+1 B |y<x;{;1)|k+1) _ —po/y (@) ly(@) [ y(@) da =

/

Tj
e L, S
— [y @ =y @y @] - [ e <o
J
; o

" "

since y"(z)y" () > 0 for all z € [2},2,,) and ¢/ () = " (a/;) = 0.
This gives the first of inequalities (9), whereas the rest inequalities follow
from y(z)y'(x) > 0 on the interval [z}, /).

Similarly, for the first of inequalities (10) we have y/'(z/)* — 3/ (z;)* =

— —2/y’(m)y"(m) dr = —2y(z)y" (z) xi + 2/y(az)y’"(az) dz < 0, since

y(r;) = y"(«}) = 0 and y(z)y" (x) < 0 on [xj, ;) - The rest ones follow

from the 1nequa11ty y'(z)y"(z) > 0 on [z;,2],,).
In the same way, for the first of (11) we have

/

]
'@~y @ = =2 [ 3@y (@) do =
— 2@y @), +2 [y @) <o

"
x'!
J

ISSN 1812-3368. Bectnux MI'TY um. H.D. Baymana. Cep. “EctectBennbie Hayku”. 2015. Ne 2 13



since o' (2)y" (2) = —po |y|" " y()y'(z) < 0 on [z}, }) and y/(x}) =
= y"(z') = 0. The rest ones follow from y"(z)y"” (x) > 0 on [z}, :c;’jrl)
Finally, for the first of (12) we have

y///( ) _y///( J+1)2:_2 / y’”(:c)yw(x)d:c:

7
j+1

o / y" (2)y(x) ly(x)|*" de =2poy” (x)y(z) ly(z)[*" T

Zj

T

Zj

g k—1
~2tm [y )y (@) o) do <
z;
since /' (z)y"(x) > 0 on [x;,27,,) and y(z;) = y"(2/,,) = 0, whereas the
rest inequalities follow from 3 (z)y™ (z) > 0 on [/}, ;41) . »

So, the absolute values of the local extrema of any typical solution to
equation (1) form a strictly increasing sequence. The same holds for its
first, second, and third derivatives.

Hereafter we need some extra notations. Put Q! =Traj, (Q2,NS%,1)CS?.
This is a compact subset of the interior of {2, containing ultimate parts
of all trajectories generated by maximally extended typical solutions to
equation (1) with py = 1. As for solutions generating the curves in R*
completely lying in €2, the trajectories related completely lie in Q1 .

Besides, we define the compact sets K; = {a € Q1 : a; =0} and the
functions &; : R*\{0} — R, j = 0,1,2,3, taking each a € R*\{0} to the
minimal positive zero of the derivative y/)(z) of the solution to the initial
data problem

YV (@) + y(o) ly(@) [ = 0; 03
y(0) = aj, j=0,1,2,3.
Further to each solution y(x) to equation (1) we associate the function
1

Z | oy (z) [1R-D+4 1 1 with p = p¥~!. The notation F,, does not

use po, smce non-trivial functions cannot be solutions to equation (1) with
different py.

Lemma 7. The restrictions §¢|Kj, 1,7 =0,1,2,3, are continuous.

<« First we prove continuity of & at a € Q, with a; > 0. Suppose
¢i(a) =x;and € > 0.

We can assume that ¢ is sufficiently small to be less than z; and to
provide, for the solution y(z) to (13), the inequalities ¥ (z — &) > 0 on
[0, 2; — €] and y (x; +€) < 0. In this case the point a has a neighborhood
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U C €1, such that the above inequalities are satisfied for all solutions to
(13) with initial data o’ € U. Hence, |;(a’) — x;| < €. Continuity of &; at
a € 2, with a; > 0 is proved.

In the same way it is proved at a € €2, with a; < 0. Since a; # 0 if
a € Kj,i # j, we have proved continuity of the restriction ;| in the
case i # j.

As for &|k,, note that between two zeros of y¥)(z) there exists a zero
z; of another derivative y) (z). The values y™(x;), m = 0,1, 2,3, due to
continuity of §;|,, depend continuously on a € K;, whereas the restriction
§i|x; depends continuously on these values. This proves continuity of the
restriction & |,. »

Lemma 8. For any k > 1 there exist () > q > 1 such that for any
typical solution y(z) to equation (1) the values of all expressions

1 1 1
y(zii,)| y(zj) |+ y(z)) |4
y(@h) | y(@) |’ ()|

1 1 L
@) |5 Y [F |y |
vyl y'(x;) oy ()

1 1 _1
YE [FE )[R [ ) |
vl |y Ty (=) ’

1
y///( ) 3k+1 y’”(:c;-) 3k+1 y”’(xj) ﬁ
y/// ('Tg ) ’ y/// (1']) ? y/// (xg)

with sufficiently large j are contained in the segment [q, Q).

<« Let us define the continuous functions v;; : K; — R (all indices
1,7,0 are from O to 3 and pairwise different) taking each point a € K;
to the ratio of the absolute values of the j-th derivative of the solution
y(x) to (13) at 0 and at the next point where the [-th derivative vanishes,
. a;
o al0) = |

non-zero if a € K).

(both the numerator and the denominator are

Due to Lemma 6, each function 1);;; at all points of the compact set K;
is positive and less than 1. Hence 0 < i}?f Yiji(a) < supj(a) < 1.
i K;

Now consider an arbitrary typical solution y(x) to (1) and two its nodes,
say x; and 7/ ;, with sufficiently large numbers such that the related points
in S® belong to 1 . In this case we can choose constants A # 0 and B > 0
such that the function z(x) = Ay(Bz + z}) is a solution to (13) with

a € K. Indeed, this is equivalent to existence of A # 0 and B > 0 such
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that .
’A’ 1 p07

Z (ABmy m (a:;))2 =1,
m=0,2,3

which follows from existence of a root A to the equation

3 Bkl
(y(@))? A%+ (" (=) po AL + (" () pe 2 1A 2 = 1.

"

y(%’ﬂ)
y(w;)
1
ag = |A‘ , A1 = , |A| B2 as = |A| B3 1.e. equal to ¢103< ) 1. Put

1
4

The value is equal to this for z(z) at &(a) and 0, where

_Z
q= (sup wlog(a)> , Q= (1}1{1f ¢103(a)) and obtain the statement of
K 1

1
the lemma for the first ratio. The same procedure can be used for others.

Then we just choose the minimum of 12 values of ¢ and the maximum of
12 values of Q. »

Lemma 9. The domain of any typical (to the right) solution y(z) to
equation (1) is right-bounded. If x* is its right boundary, then

lim |y (z)| =400, n=0,1,2,3. (14)

r—x*

<« It follows from Lemma 8 that the absolute values of the neighboring
local extrema of any typical solution for sufficiently large number, say for
j > J, satisfy the inequality |y(z,,)| > ¢'? |y(«})| with some ¢ > 1,

whence
()| = ¢ |y(ly)]. (15)

In particular, this yields (14) for n = 0. Other n are treated similarly.

It is proved in [7] that there exists a constant C' > 0 depending only
on k and p, such that all positive solutions to equation (1) defined on
a segment [a, b satisfy the inequality |y(z)| < C'|b— a|_ﬁ . The same
holds for negative ones. Hence the local extrema satisfy the estimate

4
ly(@))| < C(x —xj_l)*ﬁ, which yields, together with (15), the

k—1
inequality (z; — ;) < Q- 3*-DU=J) y(%ﬂ ’
It follows from @ > 1 that Q 3%~V < 1, Z —xj_1) < 00, and

j=J
the domain is right-bounded. »

Lemma 10. For any k > 1 there exists positive constants m < M
such that for any typical solution y(x) to equation (1) the distance between
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its neighboring points of local extremum, x'; and x';. |, ultimately satisfies

the estimates
m < (2, — o)) Fy (a1 < M. (16)
<« Put £, = op (Q}r) . It is a compact subset of the set £ defined
by (6) and lying inside 2. Put
=inf{&(a): a € Ey a1 =0} > 0;
M =sup{&i(a): a€ Ey a0 =0} < o0.
Let y(z) be a typical solution to equation (1), x and z’,, be
neighboring points of its local extremum. We can choose positive constants
Aand B such that the function 2(x) = Ay(Bx+x}) is a solution to equation

(1) with pp = 1 and its data at zero correspond to some point in E, i.e.
F.(0) = 1. It is sufficient for this to find a positive solution to the system

ARt = Blpo;
3 1
Z |ABmy(m)($9)‘m(k—1)+4 =1,
m=0
namely
1 —4
m(k—1)+4

3 —(k—1)
1
<§ :‘py(m)(x;.)‘m(k—l)+4> _ Fy(xj)—(k—l)'
m=0

Moreover, for local extrema with sufficiently large numbers, the point
defined in R* by the data of the function z(z) at zero belongs to F, . Hence
the first positive point L of local extremum of z(z) belongs to [m, M],
whence the difference 7’ — 2’; is equal to LB and satisfies (16). »

Lemma 11. For any k > 1 and py > 0 there exists a constant
0 > 0 such that local extrema of any typical solution y(x) to equation
(1), ultimately satisfy the inequality |y(x9)| > OF, ()"

<« Let y(z) be a typical solution to equation (1) and 7/ be its
local extremum point with sufficiently large number. Put 6 = inf{|a| :
a € Ei,a; = 0} > 0 and choose a constant A > 0 such that the data
at zero for the solution z(z) = My(N\*~'z 4 ) correspond to some
point in E,. Then F.(0) = 1 and [2(0)| > 6. Since 2(0) = Ay(z);) and
F.(0) = AF,(x}), the lemma is proved. »

Remark 1. For typical solutions to (1) with their corresponding curves
lying completely in (), the statements of Lemmas 8, 10, and 11 hold in
the whole domain, not only ultimately.

ISSN 1812-3368. Bectnux MI'TY um. H.D. Baymana. Cep. “EctectBennbie Hayku”. 2015. Ne 2 17



Theorem 1. For any real k > 1 and py > 0 there exist positive
constants Cy and Cy such that local extrema of any typical maximally
extended to the right solution y(x) to equation (1) in some neighborhood of

4
the right bound x* of its domain satisfy the inequalities Cy(x*—z}) k=1 <

4

< |y(a})| < Coa* — ) *1.
<« Let 2, and 2/, be two neighboring points of local extremum of
a solution y(z) such that the statements of Lemmas 8, 10, and 11 hold.

According to these Lemmas, for all j > J we have
@y — 2 < MF,(2})" ) < MF,(af)) Vg 3k-00=0),

o0

L MF,(aly)~ )
which implies z* — 2/, = Z (x;H — x;) < 1 i qjg(k,l) and
j=J

4
A F(a)* ( ME, (/)" k-1
’ * INT y\J y\<rJ _
ly(@))] (% —afy) k-1 < P ( 1 — g3(—1) -

1 k—1
Mp, :
1 — q—3(k—1)

On the other hand, 2/}, —, > mF,(z/;)~*"DQ3*=DU=)) which implies

4
" 4 mF (.:E/ )_(k_l) m
el o — o) > 0, (BB

_4
m k—1
()

Asymptotic Classification of the Solutions to the Fourth-Order
Equation (1). In this part we consider the asymptotic behavior of nontrivial
solutions to equation (1) in the cases not previously considered. Then
asymptotic classification of all maximally extended solutions to equation
(1) will be given.

First for solutions to equation (1) generating in R* curves lying entirely
in {2, we describe their asymptotic behavior near the left boundary of the
domain.

Lemma 12. Suppose y(x) is a maximally extended to the left nontrivial
solution to equation (1) with derivatives changing their signs according to
scheme (7). Then the domain of y(x) is unbounded to the left, the functions
y(x),y (x),y"(z),y" (x) tend to zero as © — —oo, and the distance
between its neighboring zeros tends monotonically to oo as x — —o0.
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Using the substitution x — —x we can describe the asymptotic
behavior of non-typical solutions near the right boundaries of their domains.
Combining these results we obtain the following theorem.

Theorem 2. Suppose k > 1 and py > 0. Then all maximally extended
solutions to equation (1) are divided into the following four types according
to their asymptotic behavior (Fig.3).

0. The trivial solution y(x) = 0.

1. Oscillatory solutions defined on (—o0, b). The distance between their
neighboring zeros infinitely increases near the left boundary of the domain
and tends to zero near the right one. The solutions and their derivatives
satisfy the relations lim vy (z) =0, E |y (z)| = oo for j =0,1,2,3.

At the points of local extremum the following estimates hold:

4 4
Crlz —b F-1 < |y(z)| < Cplw — b =T (17)

with the positive constants C; and C5 depending only on k and py.

2. Oscillatory solutions defined on (b, +00). The distance between their
neighboring zeros tends to zero near the left boundary of the domain and
infinitely increases near the right one. The solutions and their derivatives
satisfy the relations lim vy (z) =0, E |y (z)| = oo for j =0,1,2,3.
At the points of local extremum estimates (17) hold with the positive
constants C'; and Cy depending only on k and py.

3. Oscillatory solutions, defined on bounded intervals (&',”). All their
derivatives y), with j = 0, 1,2, 3, 4 satisfy qrr;/ ‘y(j)(m)| = @/ y(j)(x)‘ =
= 00. At the points of local extremum suﬂcficiently close tox any boundary
of the domain, estimates (17) hold respectively with b = &’ or b = b” and
the positive constants C; and C5 depending only on k and py.

YA
V320

=Y

IR R

Fig. 3. Solutions to equation (1)
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Fig. 4. Solution to equation (2)

Asymptotic Classification of the Solutions to the Fourth-Order
Equation (2). In this section previously obtained results on the asymptotic
behavior of solutions to equation (2) are formulated [7, 28].

Theorem 3. Suppose k > 1 and py > 0. Then all maximally extended
solutions to equation (2) are divided into the following fourteen types
according to their asymptotic behavior (Fig.4).

0. The trivial solution y(x) = 0.

1-2. Defined on (b,+o00) Kneser (up to the sign) solutions (see
definition in [5]) with the power asymptotic behavior near the boundaries
of the domain (with the relative signs +):

4
y(x)~ + Cap(z — b) k=1, = — b+ 0;

_4
y(x)~ £ Cypx k-1, T — 400,

1
4(k + 3)(2k + 2)(3k + 1)) k-1
p()(k — 1)4 '

3-4. Defined on semi-axes (—oo,b) Kneser (up to the sign) solutions
with the power asymptotic behavior near the boundaries of the domain
(with the relative signs +): 4
y(z)~ £ Cy, |2| *-1, T — —00;

y(z)~ + Cpp(b—2) 71, 2 —b—0.

where Cy;, = (
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5. Defined on the whole axis periodic oscillatory solutions. All of them
can be received from one, say z(z), by the relation y(z) = A\z(\~1x +
+ x¢) with arbitrary A > 0 and xg. So, there exists such a solution with any
maximum h > 0 and with any period 7" > 0, but not with any pair (h, 7).

6-9. Defined on bounded intervals (¥',b”) solutions with the power
asymptotic behavior near the boundaries of the domain (with the independent
signs +): 4
y(z)~+ Cy(p(d))(z =) k-1, =V +0;

4
y(@)~ = Cu(p() (0" — ) F1, @ — b — 0.

10-11. Defined on semi-axes (—oo,b) solutions which are oscillatory
as ¢ — —oo and have the power asymptotic behavior near the right
4

boundary of the domain: y(z)~ + Cy,(p(b))(b — z) *¥-1, z — b — 0. For
each solution a finite limit of the absolute values of its local extrema exists
as r — —00.

12-13. Defined on semi-axes (b, +00) solutions which are oscillatory as
x — 400 and have the power asymptotic behavior near the left boundary of

4
the domain: y(z)~ + Cy(p(b))(z — b) k-1, x — b+ 0. For each solution
a finite limit of the absolute values of its local extrema exists as + — +o0.

Asymptotic classification of the solutions to the third-order equa-
tion (3). In this section previously obtained results on the asymptotic
behavior of solutions to equation (3) are formulated [7, 28].

Theorem 4. Suppose k > 1, and p(x) is a globally defined positive
continuous function with positive limits p, and p* as x — Fo0o. Then any
nontrivial non-extensible solution to (3) is either (Fig. 5):

1-2) a Kneser solution on a semi-axis (b, +00) satisfying

_3

y(z) = £Cs(p(b)) (x —b) ¥~1(1+o0(1)) as z—b+0,
3

y(x) = £0u(p) = FT(140(1)) s r s too

1

3(k+2)(2k+ 1)\ +1
where Csy(p) = ( ( p(k)—( iE )) ;
3) an oscillating, in both directions, solution on a semi-axis (—o00,b)
satisfying, at its local extremum points,

3
ly(2')| = /| FTW gy 2 = —oo,

3
ly(z)| = |b— :U’|_’f—1+0(1) as x' — b+ 0;

4-5) an oscillating near the right boundary and non-vanishing near the
left one solution on a bounded interval (V',b") satisfying
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y(z) = £Ca(p(¥))( — ¥) T (1 + o(1))

as x — b + 0, and, at its local extremum points,

3
ly(a')] = b — /| TFT W

as ' — b —0.
Conclusion. Note that oscillatory solutions of equations (1) and (3)
defined on (—oo; x,) or (x,; +00), are the solutions of the form
1

- n
y(w) = Il e = o] hllogle —w.l), a =", (19)

with n = 4 and n = 3 respectively and an oscillatory periodic function

h:R—R.
Indeed more general result takes place. Thus, for the equation

gy +poly T y(x) =0, n>2, keR, k>1, p#0, (19)

the existence of oscillatory solutions of the type (18) is proved.

Theorem 5. For any integer n > 2 and real k > 1 there exists a
non-constant oscillatory periodic function h(s) such that for any py > 0
and z* € R tfze function

y(a) = p " (2" —2) *h(log(a’ ~x)), —00 <& <&, a = =, (20)
is a solution to equation (19).
y
1
o - i X

Fig. 5. Solution to equation (3)
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Corollaries from this theorem for even and odd n are also proved for
solutions defined near +oo [42].
This work was supported by the REFBR Grant (no. 11-01-00989).
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