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Usyuena 3adaua Kowu 015 1uHelinbix onepamopHo-oudpepenyuanbHbix ypasHeHuil
6MOpP020 NOpsAdKa 6 2uibbepmogom npocmpancmee. Paccmompen cnyuaii neoepa-
HUYEHHO20 CAMOCONPSIICEHHO20 HEOMPUYAMETbHO2O ONepamopd, 0coboe GHUMAaHUe
yoeneno onepamopy Jlannaca ¢ kpaesvim ycinoguem Jupuxie. Mccnedoseana cmewian-
Has 3a0aua OJiA B0HOB020 VPABHEHUs, 88€0eH dHep2emuyecKull Kiacc peueHuti u
odokazano npedcmasienue pewenull 6 eude unmezpaia boxuepa — Cmunmoeca. Yema-
HOBIEHA CB513b MeNCOY CREKMPATIbHbIMU CeoUcmeamu onepamopa Jlaniaca u cmabu-
auzayueti npu OONLUUX 3HAYEHUAX BPEMEHU PeuleHull CMEeUaHHol 3a0a4u 015 807-
H0B020 ypasuenus. Mccnedoeano acumnmomuyeckoe nosedenue no 6pemeHu (yHK-
Yuu 1OKAIbHOU dHepauu OJisl PA3IUYHbIX MUN08 cnekmpa. B ciyuae ocpanuuenmvix
obnacmetl, ko20a onepamop Jlannaca umeem OUCKpemuwlii Cnekmp, 00Ka3aHo, Ymo
peuienue, 10KAIbHAS IHEPSUsi KOMOPO20 CIMPEeMUmcs K HYJI0, PAGHO HYIIO MOXicOe-
cmeenHo. /s npou36onbiblx 0baacmell 8 Cyyae onepamopa ¢ HenyCmviM MOYeUHbIM
CneKmpoM OOKA3AHO CYUWeCMBOBAHUE 2IAOKUX U (UHUMHBIX HAYATbHBIX (DYHKYULL,
0J1s1 KOMOPLIX PYHKYUS TOKAIbHOU SHepeuu He cmpemumcs K Hymo. [lokasano, umo
0715 Onepamopa ¢ HenPepvI6HbIM CNEKMPOM CIPEMUMCSL K KO Cpednee No epeme-
HU DYHKYUU 10KATbHOU dHepeuu. [[ns ciyuas abcomiomuo HenpepvleHO20 CReKmpa
VCMAHOBIEHO CIPeMIeHUe K HYI0 CAMOU (YHKYUU JTIOKANbHOU IHepIUll.

Knrwouegwie cnosa: oneparopHo-aupdepeHraIbHoe ypaBHEHHE, THIIEPOOINIECcKoe
ypaBHEHHE, KpaeBoe ycnosue Jupuxie, crabunnzamnys, oneparop Jlammaca, crexrp.
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We investigate the Cauchy problem for a second order non-stationary linear operator
differential equation in a Hilbert space. We consider the case of an unbounded self-
adjoint positive operator with a special regard to the Laplace operator with Dirichlet
boundary conditions. The corresponding problem is a mixed problem for a wave
equation. Introducing the energy class solution we prove its representation by the
Bochner—Stiltjes integral. We establish the connection between spectral properties
of the Laplace operator and stabilization for large time values of the solutions to the
mixed problem of the wave equation. We investigate the asymptotic behavior in time
of the local energy function for the various types of spectrum. For bounded domains
where the spectrum of the Laplace operator is purely discrete we any solution with
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a local energy tends to zero in time is identically zero. For arbitrary domains in the
case of operator with non-empty point spectrum we prove that there are smooth and
finite initial functions for which the local energy function does not decay. In the cases
of continuous and absolutely continuous spectrum of the Laplace operator we prove
the mean decay and the decay of the local energy function respectively.

Keywords: operator differential equation, hyperbolic problem, Dirichlet boundary

condition, stabilization, Laplace operator, spectrum.

Introduction. Very often in mathematical physics arises the question
of large time behavior for the solutions of Cauchy problem for the non-
stationary operator equation

Uy + Lu=0, t>0; (1)
u|t:0 - f7 ut}t:O =9, (2)

where L is a linear self-adjoint operator in a Hilbert space H. The interest of
mathematicians to this problem is natural because many important physical
problems leads to the Cauchy problem (1), (2). The examples of such
problems are acoustic and electromagnetic oscillations in homogeneous
and non-homogeneous media [1, 2]. Closely related operator equations
arises in the problem of small vibrations of an ideal non-homogeneous
fluid [3].

The general theory of the operator Cauchy problem (1), (2) in a Hilbert
space contains many results about solvability and a priory estimates for
solutions [4-9]. We will investigate qualitative properties of solutions of the
problem (1), (2) with special attention to the connection between spectral
properties of operator L and behavior of solutions for ¢ — oo.

Let us note that the existence results and qualitative properties of
solutions to the problem (1), (2) closely connected with the representation
formulas for solutions. So, one of the first results concerned to the case
of a bounded positive operator L [10] state that the solution of (1), (2)

sin(v/Lt)

represents by the series u(t) = cos(v/Lt) f + ——=—g, where

VL

X (L1\kg2k . (L 1)\kg2kH1 k43
cos(VLt) = kzzo %, sin(VLt) = kZ:O ( ()2k YT

But more interesting due to physical and technical applications is the case
of unbounded operator L. Let L is an unbounded positive operator whose
domain D(L) is dense in H. We suppose that the inverse operator !
is bounded. We formulate the solvability result for the non-homogeneous
problem

Su=uy+Lu=h, t>0; 3)
u’t:O = f7 Ut|t:0 =4g. 4)
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Let H; be a Hilbert space of measurable functions u(t) : [0,7] — H witha
T

scalar product (u, v) g, = /(u(t),v(t))H dt and the norm [|ul|;, = (u,u)p,.
0
We say that the function w(t) has a derivative on [0, 7] if the following
representation holds:
t

u(t) = u(to) + /U(T)dt, to € [0,T7. (%)

to
Here the function v(t) € H; gives for almost all ¢ € [0,7] the value of
the derivative du/dt. Consider an operator Au = (Su,u(0),u:(0)). The

operator A defines on the domain D(A) of all w € H; such that functions
d? d?
du/dt, Lu, Ldu/dt belong to H; and continuous; the functions d_tg’ Ld_tg
belong to H; and piecewise continuous. The image of operator R(A) is a
linear manifold in a Hilbert space W = H, x D(v/L) x H where D(v/L)
1

is a Hilbert space of elements u = L™ 21, ¢ € H with the scalar product
(W V) pvE) = (\/Eu, \/fv) It is possible to consider the solution of the
problem (3), (4) as a solution of the operator equation Au = (h, f,g),
where (h, f,g) € W.

Theorem 1. The operator A admits a closure A, R(A) = R(A) = W.
There exists a bounded inverse operator A L on W and the problem

Au= (h, f,9) (6)
has the unique solution for all h € Hy, f € D(\/L), g € H [8].
It is possible to prove that the solution of the operator equation (6) is
a weak solution of the problem (3), (4). It means that v € Hy, u; € Hy,
VLu € Hy, u(0) = f and the following integral identity holds:
T

/ ((ut,wt) - (\/Zu \/Zw)) dt + (g,w(0)) = 0 %

0

for all w € Hy, w;, € Hy, V/Lw € Hy, w(T) = 0. The solution from such
class is unique.

Below we consider the case of hyperbolic problems (1), (2). The main
example of an elliptic second-order operator L is the Laplace operator
Lu = —Au. Let Q C R, n > 2, be an an arbitrary (may be unbounded)
domain with smooth boundary I'. We consider the mixed problem for the
wave equation

Ut — Au = 0 (8)
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in (¢t > 0) x 2, with the initial conditions
u(0,2) = f(z); w(0,) = g(z) for z€Q ©)

and the boundary condition
u=20 (10)

on (¢t > 0) x I'. We assume the initial functions f € H 1(Q) and g € Ly(2)
are real-valued.

It is well known that a solution of the problem (8)—(10) satisfies the
energy conservation law

E(t) = ||Ut||iQ(Q) + ||Vu||iQ(Q) =£(0) (11)

for ¢ > 0.

Below we study the connections between spectral properties of the
Laplace operator and the behavior for large values of time to solutions
of the problem (8)-(10). We investigate stabilization in time with special
regard to the properties of the local energy function

Er(t) = uell 7,0y + VUl Ly, (12)
where 2 C 2 is a bounded domain.

Let us note that many practically important problems deal with
unbounded domains € so the inverse operator L~! may be unbounded
in the main space H = Ly(12).

Solutions from the Energy Class and Spectral Representation. We
consider solutions of the problem (8)-(10) from the energy class (see
[11]), that is a function u(t, z) € C([0, +00); 1*(—)11(9)) such that u,(t, z) €
€ C(]0,+00); Ly(2)) satisfying the initial conditions (9), the equality (11)
and the integral identity

T
//((Vu,Vw) — wpwy)dt do = /g(x)w(O,x)dm,
0 Q Q
forallw € H'((0,T) x ) satisfying w = 0 on (0,T) x T and w(T, z) = 0,
T > 0.

Consider a self-adjoint non-negative operator L : D(L) — Ly(Q)
generated in Ly(€2) space by differential expression —A with Dirichlet
boundary condition. Using an estimates to solutions of elliptic boundary
value problems [14], we have the domain of operator L: D(L) = it Q)N
NH2(Y) N {Au € Ly(Q)}, here Q' C Q is an arbitrary bounded domain.
Let {E(\)}, —00 < A < 400, be a family of spectral projectors associated
with operator L [15].
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Lemma 1. Let f € [ofl(Q) g € Lo(Q). Then the solution of the
problem (8)—(10) from the energy class can be written as Bochner— Stiltjes

integral o

= / cos(VA)dE(\) f + / %d}iu)g. (13)

0

The integral (13) converges uniformly in 1?11(9) on [0,T], T > 0. The
derivative u; can be written as

/\/_sm\/_tdE f—i—/COS\/_tdE) (14)
0

the integral (14) converges uniformly in Ly(Q2) on [0, T.

Point Spectrum and Non-Decay of Local Energy. In a bounded
domain €2 the spectrum of operator L is discrete. So, the solution of the
problem (8)—(10) represents by the series

\/ t
u(t,z) = E (a; cos(y/Ajt) sm (z), (15)
j=1 VA

where a; = (f,v;)1,0) bj = (9,Vj)1o)- Here 0 < Ay < Ay < .0,

lim \; = +oo, is the sequence of eigenvalues of the operator L, {v,} is
j—roo

the orthonormal basis of eigenfunctions in Ly(€2).

Using the equality (15), we can prove that solution of the problem
(8)—~(10) is an almost-periodic function with respect to ¢ (n = 1 [16];
n > 2 [18, 19]).

Theorem 2. Let 2 C R"™ be a bounded domain and tli)rgro Ex(t) =0
for some domain Q) C ). Then u = 0 in (0,00) x .

<« The equality tliglo Eq(t) = 0 means that tli)r?o IVu(t, 2)| 1,y = 0

Therefore,

0=lim [ u, (¢, z)n(x)de =

t—o00
Ql

— t]ggo (a] cos( \/_t sm\/\/__t >/(vj)mk(x)77(a:)da:, k=1,...,n,
Aj o

for an arbitrary function n(z) € D(Q) = ¢ *(€). We have
O—Thm —//ka (t, x)n(z)dx cos(\/ Amt)dt =
—>OO
/ Z a;(v))z, (x)n(x)dz; (16)

Q/ A]_)\m
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0= Th_{%o_//u” (t,z)n(x)dx sin(mt)dt =
=3/ ¥ Jrwaln@a

o N >\m

for m = 1,2, ... The equalities (16), (17) mean that

b
)\j;m aj(’l)j)xk (33) = 0; )\j:ZAm \/)\—J (Uj)ack (;[j) =0 (18)

for x € Q" and m = 1,2,... Using the analyticity of eigenfunctions in (2
we obtain from (18) that

b;
Y 40)n(@) =0 Y (v (@) =0, k=1,...,n,
)\j:)\m )\j:/\m )\.]

forx € Qand m =1,2,... It now follows from the boundary condition
(10) that Y a;v;(x Z (r) = 0 for z € Q and
Xj=Am Xj=Am

m = 1,2, ... By the orthogonality of elgenfunctlons we have a; = b; = 0
forall j : A\j = A\, m = 1,2,... Proof of Theorem 2 is complete. »

In the case of unbounded domain we say that the energy scatters to
infinity if for any bounded ' C Q

lim &y (t) = 0. (19)
t—o0
The following theorem means that in the case of 0,,(L) # & (the continuous
spectrum o.(L) can be non-empty too) the relation (19) does not holds even

for smooth and finite initial functions.

Theorem 3. Let 0,(L) # @. Then there exist the functions f,g € D(QQ)
and domain €Y' is compact embedded to ) such that

t—o0

< Let A € 0,(L), v(z) € f[l(Q) is a corresponding eigenfunction. It
is sufficient to consider A > 0 because 0 ¢ 0,(L). Really, for A\ = 0 an

eigenfunction is a harmonic function from H 1(Q2) and vanishes in Q [2,
Ch. 2, Par. 4, no. 4.7]. Consider the solution u(t,z) = cos(v/At)v(z) of
the problem (8)—(10) with f = v, g = 0 we obtain

Eq(t) = %/ (IVv]* + A\?) dz + M / ([Vv]* = A?) dz. (21)
o o
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Now, we have an integral equality for an eigenfunction: / |Vol*dz =
Q
= A / v?dz. Therefore,
Q

/ (IV]* + Av?) dz > 0; / (IVv]* = Av?) dz =0
Q Q

and by the absolute continuity of the Lebesgue integral there exists a
domain 2" is compact embedded to 2 such that for some £ > 0 we have
the inequalities

/ (|V]* + W) da > & / (Vv]* = M?) dz| <

Qf 194

(22)

DO ™

Thus, by (21), (22) we obtain an inequality
€
Ea(t) > 1

for t > 0. Let us consider the solution « of the problem (8)—(10) with initial
functions f = 0, g = 0, where function © € D({2) satisfy the inequality
lv = 3|31y < /16. Then

1
/(af + |Va|?) dz > 5/ (uf + |Vul?) dz—

o o
- [ (=@ + [V - ) P)do >
> 2 [ (=0 + V- 2 de 2
!
> [ (=0 + V- @) P)do =
=== V=)0 > s 15 =15 >0, t>0.

The inequality (20) is proved. »

Continuity of Spectrum and Mean Decay of Local Energy. Let €2 be
an unbounded domain. In the case of 0,(L) = @ we have the mean local
energy decay. A proof use the following theorem [1, Th.9.15, 20].

Theorem 4. Let real-valued function m(z) € C(—o0,400), m(z) =0

[e.e]

Jor z <0, varg jooym(z) < 0o and s(t) = [ e dm(z) for t > 0. Then
0
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t
.1 2
tlrgog/|s(7')| dr = 0. (23)
0

Now we prove the main result of this section.

Theorem 5. Let 0,(L) = @. Then for all f € ﬁ[l(ﬂ), g € Ly(Q) and
all bounded domains ) C

¢
lim %/EQ/ (1)dr = 0. (24)

t—o0
0
« It is sufficient to prove the relation (24) for f,g € D(2). For any
fe ;11(9), g € Ly(Q) and arbitrary £ > 0 there exist f,§ € D(Q) such
that || f—fll 1) < & 11931, < & Therefore, for ' = Qp = QN{|z[<
< R} we have

Eo (t) = / (2 + |VuP) do < 2 / (@ + |VaP) dat

Qr Qpr
+2/ (((u— @))? + |V(u— @)|?) dx = 2/ (@; + |Val’) do+
Q Qg
+2 (Hf - JFH?LP(Q) +1lg - §||22(Q)> < 2/ (@7 + |Val?) dz + 4€?

Qr
for ¢ > 0. Now, to prove (24) suppose that f,g € D(Q2). Note that
f,g € D(Q) C D(LP),p=1,2,..., where D(LP) is a domain of the p-th
power of the Laplace operator L = —A with Dirichlet boundary condition.
Thence [17, Ch.9, Par. 1] for f,g € D(2) we have the inequalities

o0

/)\2pd(E(/\)f, f) < oo /A?pd(E(A)g,g) o, p—0.12. ..
0

0
(25)

Now, by the operator calculus for self-adjoint operators [17, Ch.9, Par. 1]
for g(x) € D(Q2) and t > 0 we obtain the relations

o0 o0

(w1, )1a(0) = = / sin(VA)VAA(E() f, q) + / cos(VAt)d(E(N)g, q) =
= /sinztdml(z)+/cosztdm2(z); (26)
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(Vu, VQ)LQ(Q) = <\/Zu, \/ZCJ) =

La(Q)
:/)\cos(\/Xt)d(E()\)f, )—i—/\/Xsm(\/Xt)d( (Mg, q) =

= /cos ztdms(z —l—/smztdm4 z). (27)
0 0

Here we have the equalities

dmy(z) = —2d(E(2*)f,q);  dma(z) = d(E(2*)g, q);

dms(2) = 22 d(E(z°) f,q);  dma(z) = zd(E(z")g,q).
The operator L is a positive operator with o,(L) = @, so m;(z) are
continuous functions for —oo < z < +o0 and m;(z) = 0 for z < 0. By

the inequalities (25) and the relation [17, Ch. 9, Par. 1, Pt. 128, Eq. (12)] we
obtain that

varjp yo0)m;(2) < oo, j=1,...,4. (28)
It follows from (23)—(26) that for all ¢(z) € D(Q)
¢
1
thm n (UT<T> I‘), Q($)>%2(Q) dr = 0; (29)
—oo t
0
. ¢
lim — [ (Vu(r, z), Vq(x))%z(m dr = 0. (30)
t—ro0

0

Consider the closure of this equalities on ¢ in Ly(€2), we obtain that (29) is
valid for all functions q € Ly(Q) and (30) — for all ¢ € Ly(Q2) N H'(QR)
for any R > 0, satisfying the condition ¢ = 0 on I[' and such that

[ |Vq|*dz < oco. Furthermore, we have
0

2 2
AUz, @) + IVuellz, 0

[e.e]

//\2(:08 (VAt)d(E +7As1n VAt d(E(N)g, 9)+

0
oo

/)\281n2\/_td )+ [ Acos®? VALd(E(N)g, g) =

0 0
[

= [ RdEms )+
0
= ||Af|@2(9) + ||V9||iQ(Q)' (31)
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Applying Friedrichs inequality with an arbitrary R > 0 we obtain an
estimate [|ull;,q,) < C(R)|[|Vul,,q,) for ¢ > 0. Thence, holds the
following inequality:

IVull grag) + el gy < C(R). (32)
So, the set of functions {w;(t,z)} and {Vu(t,x)}, t > 0, are compact in
t

1
Ly(Qg) for any R > 0. Let us prove that tlim z/HuTHiQ(QR)dT = 0.
—00

0
By the estimate (32) the set of functions {u(¢,x)}, ¢ > 0 is compact in
Ly(Qr). Let {h;r(x)},j =1,2,..., 2 € Qg be an orthonormal basis in the
Ly(Qp) space. We continue the functions h; i by zero to Q\Q r- Denote

the continued functions as h;p too. Then w(t,z) ch r(t

for ¢ > 0. We have ]\}1_r>r(1>0||ut ZCJR ”Lz(QR) = 0 for

t > 0. By the compactness crlterlon [21 P.247, Th.3] in the space
Ly(QR) with basis {h; g} for all ¢ > 0 there exists N > 0 such that
N

T) = Z cir(t)hjr(z) + Z ¢jr(t)hjr(z) fort > 0, z € Qg and

J=N+1

I Z C]Rh]RHLz ) <&, t>0. Thence,
j=N+1

N 00
2 2 2
luell? 0 = 11D cirhialltyom + 11 D cirhizllqn =

j=1 j=N+1

N
)+ Z CJRhJRHL2 < ZciR@) +e% (33)
j=1

j=N+1

uMz

Integrate (33), we obtain
t

hm /||u7||L2 Qr) dT < Z tli},{.é /CiRdT + 52 —

0
t

N
1
:Z hmz / (tr, hjR)Eoop dT | +€°. (34)

Jj=1 0

1
By the equality (29) we have tlim ;/(Ur;hj,R)%Q(Q) dr = 0 for j =
—00
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= 1,2,...,N and it follows from (34) that for any ¢ > 0

lim sup — / |7 Lo(p) AT < 2. Now, we obtain
t—00

lim = /|yuT||L2 oy d7 =0 (35)

t—oo t
: 2
for any R > 0. Let us prove now that }g&;/”VUHLz(QR)dT = 0.

0
For any R > 0 we define the space: Hgp = {v € H'(Qg) : vl =0},
where 'y = I'N {|z| < R}. The space Hp, is a Hilbert space with a scalar
product (v,w)z. = [ (Vv, Vw) dz. Similarly we define the Hilbert space

Qg

H = {v e H(Qg) forany R > 0 : v|p = 0,/|Vv]2da: < oo}, with a

scalar product (v, w)g = /(Vv, Vw)dz.

0
Let R > 0. It follows from (32) that the set of functions {u(t,z)},

t > 0, is compact in the space }~IR. Denote by {h; r(x)}, j =1,2,..., the
orthonormal basis in the space Hg. By the compactness criterion in the
space Hp with basis {h; gz} for any ¢ > 0 there exists NV > 0 such that

o0

z) = ij,R(t)hj,R@) + > bir(t)hr(),

J=N+1

and || Z bjr(t)hjr(7)| 7, < e fort> 0. Now we have
j=N+1

lu(t, 2)|7, —IIZbJRthIIH +1 Z bj.rhjrl,, <

j=N+1
N
< Z b p(t) + €% =) (uhip)g, +% (36)
j=1 Jj=1

For all v(z) € H we have an estimates |F;[v]] = ‘(U,hjﬂ)ﬁR

<
< lvllg,lhiella, = vz, < lvlg 7 = 1,2,...,N. It means that
the linear functional F}[v] = (v, h;r)g, is a bounded functional on H. By

the F.Riesz theorem there exist functions fzj,R(x) €H, j=12,..., N,
such that
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Filv] = (v, ﬁj,R)ﬁ = (w,vﬁjﬂ)h(m = / (Vo, Vhsn) dz. (37)

o)

It follows from (30) and (37) that
t t

.1 2 .1 2
lim — [ (u, hjr)g, dr = lim — (u, h/j’R> dt =

t—o0 t—oo ¢

1 N2

— Tim - (vu, Vh],R) dr =0 (38)

t—00 La(9)
0

for j = 1,2,..., N. Using (36) and (38), we obtain for any ¢ > 0 the

relation

lim sup — /||Vu||L2Q )dT—hmsup /||u||H dt <

t—o0
N t
]Zl tliglo ; O/ u, ﬁj,R)%dt +e*=¢%
So, we have the equality

t
1 9
g / IVu(r, 2)l[,qp dr =0 (39)

for any R > 0. Now, for any bounded ' C €2 we take R sufficiently large
such that ' C Qx. Combining the relations (35) and (39), we obtain (24).

Theorem 5 is proved. »

In [1] were considered the unbounded domains {2 with compact
boundaries, for which 0,(L) = @. It was proved [1, Lemma9.17] that
for any bounded domain €2’ C Q) the following relation holds:

liminf Eq/ () = 0. (40)

t—o0

It is readily seen that (40) follows from (24).

Absolute Continuity of Spectrum and Decay of Local Energy. The
spectrum o (L) of self-adjoint operator L : D(L) — H is absolutely
continuous o(L) = o04.(L) if (E(A)h,h) is an absolutely continuous
function of A for all h € H [15].
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Theorem 6. Let o(L) = 04.(L). Then for all f € ﬁ[l(Q) g € Ly(Q2)
and all bounded domains ) C )
lim Eq (t) = 0. (A1)

t—o0

<« We can assume without loss of generality (as in the proof of
Theorem 5) that f,g € D(Q) C D(LP) for all p = 1,2,... So, we can
prove (41) for this case and suppose that the inequalities (25) holds. Now,
for an arbitrary function ¢(z) € D(2) we have the equality

o0

(s, ) 1a(c) = — / sin(VAVAA(E() £, )+

0 0o

+ / cos(VAL)d(E(N)g,q). (42)
0
It follows from o (L) = o,.(L) and (25) that d(E(\)f,q) = mi(X)dA,
d(E(N)g,q) = ma(\)dX where

/)\2pym1(>\)\d>\ < o0 /)\2p\m2(>\)|d)\ <o 43)
0 0

for p = 0,1, 2,... Therefore, by (42) we have

8

(ut, @) Lo() = / Vasin(VAt)ymy(A)dA + [ cos(VAt)ma(A)dA =

o0

= —2/sin(zt)z2m1(z2)dz +2

0

cos(zt)zmy(2%)dz.  (44)

0\8 o\

It now follows from the inequality

A+1
<22 + (45)
and (43) that
/z2]m1(z2)|dz+/z|m2(z2)|dz:
0 0 0o

1 i
0 0

Now, applying the Riemann — Lebesgue Lemma to (44), we obtain
i (ur, ) 1,() = 0. (46)
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Moreover, for g(x) € D(2) we have:

(u,9) g = (Vu, V@) 1) = (V'Lu, \/ZQ)LQ(Q) =

o0

_ / Neos(VAL) (BN f,q) — / Vasin(VA) d(E(\)g, q) =

0.9} o0

=2 / cos(zt)z3my (2%)dz + 2 / 22 sin(zt)my(2%)dz.  (47)
0 0
By (43) and (45) the following integrals are finite:

/23]m1(22)\dz+/22\m2(z2)|dz _
0 0 00 0o

2
0

1 1
- —/)\\ml()\)|d)\ + 5/\/X|m2()\)\d)\ < 0.
0
Therefore, applying the Riemann - Lebesgue Lemma to (47), we obtain

lim (u(t,z),q(x))z = 0. (48)

t—o00

The space D(2) is dense in H. After closure the relation (48) with respect
to ¢ we obtain (48) for all ¢ € H. Let us prove that for any R > 0

Jim (8, 2) |, 0, = 0. (49)
By (32) the set of functions {u.(t,z)}, ¢t > 0 is a compact set in Ly(Q2g).
Let {h;r(x)}, j = 1,2,..., be an orthonormal basis in Ly(Qg). By the

compactness criterion [21], for any € > 0 there exists N > 0 such that

N 00
ut(t,az) = Z Cj,R(t)hj,R(x) + Z Cj’R(t)hj’R({L‘) for t > 0, T € QR and
j=1 J=N+1

> ¢rhyrllL,qp <€ forall t > 0. Therefore,
j=N+1

N 00
2 2 2
”ut||L2(QR) = || ch,th,R||L2(QR) + | Z Cj,th,R||L2(QR) <

j=1 j=N+1
N N

< Z C?vR + 82 = Z (ut7 h]7R)ig(Q) _I_ 52. (50)
Jj=1 j=1

By the relation (46) tlgglo (uy, hij)Lz(Q) =0forj=1,2,...,N.Apply (50)
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we conclude that for any € > 0 lim sup Hut||i2 @) S 2. It means that
t—o00

el p) = 0. (51

Let us prove now that for any R > 0 tlim IVullp, @, = 0- It now follows
—00
from (32) that the set of functions {u(t,x)}, t > 0, is a compact set in
the space Hp. Let {hjr(z)}, 7 = 1,2,..., be an orthonormal basis in
Hp. By the compactness criterion in the space Hp Wlth basis {h;r} for
any ¢ > 0 there exists N > 0 such that u(t,z) = Z bjr(t)hjr(z) +
j=1
-+ Z bj7R(t)hj7R(l'), and || Z bj’th’R“ﬁR < ¢ for all £ > 0.

j=N+1 j=N+1
Therefore,

N [e's)
2 2 2
lullg, = 11> birhiallf, + 1 D birhirlk, <

j=1 j=N+1
N N N
<Y Bare = (whp)y, e =Y (w hJR> +e2, (52)
j=1 j=1 j=1
where the functions il/j, R € H satisfy the equality ( ) (v, hj, R)

for all v € H. By the relation (48) we obtain thm (u, hj’R) _ = 0 for
—00 H
j=1,...,N. Apply the equality (52), we have for any € > 0

N
- 2
I Vull?, . = li FRES DT O MR
imsup [Vulp, q,) = limsup fluff, < > [ ushs Ste=e

In other words,

im [[Vullp, g = 0- (53)

Now, for any bounded 2 C 2 we take R sufficiently large such that
() C Qg. Finally, combining the relations (51) and (53), we get the equality
(41). Proof of the Theorem 6 is complete. »

Conclusion. The results explained in the previous sections show how
the basic information about spectrum of the Laplace operator allows us
to study the qualitative properties of solutions of the mixed problem to
hyperbolic equation. To obtain the rate of decay for local energy function
Eq (t) we need the estimates to resolvent function of the Laplace operator
in the complex domain [2, 11-13].

This work was supported by the RFBR Grant (no. 11-01-00989).
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