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Abstract Keywords 
We constructed the LS-STAG discretisation for 2D Reynolds-
averaged Navier — Stokes equations, filtered Navier — Stokes 
equations (as used for large eddy simulation and detached eddy 
simulation) and equations employed in the Smagorinsky, 
Spalart — Allmaras,  ,k k  and k  Menter’s Shear 
Stress Transport turbulence models. We added a fourth grid to 
the LS-STAG mesh consisting of three staggered grids.  
We computed the following parameters at the centres of the 
additional mesh cells: turbulent shear stress and, depending on 
the turbulence model used, turbulence kinetic energy, turbu-
lent viscosity, and turbulent kinetic energy dissipation rate. We 
verified the developed numerical method by solving the prob-
lem of flow around a circular airfoil when the flow has a high 
Reynolds number ( 2 710 10 ). The obtained results are in 
good agreement with published experimental data and nume-
rical results of other researchers. Our modification of the  
LS-STAG immersed boundary method made it possible to 
model the so-called "drag crisis" phenomenon for a circular 
airfoil when 5 6Re =10 10  

Immersed boundary method,  
LS-STAG method, turbulence 
models, Reynolds-averaged  
Navier — Stokes equations,  
large eddy simulation, deta- 
ched eddy simulation, airfoil 
 
 
 
 
 
 
 
 
 
 
 
Received 23.01.2017 
© BMSTU,  2017 

 
The research is supported by Russian Ministry of Education and Science (proj. 9.2422.2017/PP), 
Russian Federation President grant for young Russian PhD scientists (proj. MK-7431.2016.8), 
Russian Foundation for Basic Research (proj. 17-08-01468a) 

 

Introduction. In number of engineering applications, for example in flow simulation 
around wind turbine rotors, heat exchanger pipes, overhead and underwater cables 
and pipes, building structures, marine infrastructure elements, etc., it is necessary to 
solve coupled hydroelastic problems. Such problems are enough difficult for the 
numerical solution and require high-precision numerical methods usage. There is a 
special class of numerical methods — the immersed boundary methods — in which 
the mesh is not connected to the body boundary and is not modified during the entire 
computation, despite the immersed body movement [1]. These methods involve the 
rectangular meshes usage. Cells of irregular shape, called the ''cut-cells'', are formed at 
the intersection of a rectangular mesh with the immersed boundary. One of the most 
effective methods in this class is the LS-STAG method [2]. This method has not been 
implemented in both commercial and free software packages. 
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To obtain accurate quantitative results when simulating unsteady flows characterized 
by high-speed airfoils movement, and hence by high values of local Reynolds number, 
strong mesh refinement is need. It leads to a sharp increase in computational cost of direct 
numerical simulation. The traditional way here is turbulence simulation by using some 
well-known approaches and turbulence models. However, the corresponding numerical 
schemes haven’t been developed for LS-STAG approach. 

In the present research the LS-STAG discretizations for two-dimensional RANS, 
LES and DES equations and transport equations from Smagorinsky, Spalart — 
Allmaras, ,k   k   and k   SST turbulence models are constructed. 

Governing equations. The problem is considered for 2D unsteady case when the 
flow around an airfoil assumed to be viscous and incompressible within the framework 
of RANS, LES and DES approaches. In contrast to direct numerical simulation (DNS) 
based on solution of Navier — Stokes equations and resolution of all turbulent 
movement scales, turbulence models usage involves simulation of turbulence scales 
contribution to the averaged motion (in case of RANS approach) or simulation of scales 
that do not exceed the filter width   (in case of LES approach). In case of RANS 
approach one speaks of the Reynolds stress simulation and in case of LES approach one 
speaks of the subgrid stress simulation. 

The Reynolds-averaged Navier — Stokes equations are being solved in RANS 
approach, and the filtered Navier — Stokes equations are being solved in LES approach 
instead of the Navier — Stokes equations. DES approach usage means that RANS 
equations are being solved in one part of the computational domain, and LES equations 
are solved in the other part. It is possible to write down the unified governing equations 
in dimensionless variables for all approaches, because the form of LES equations is 
similar to the form of RANS equations. So the incompressible flow is described by the 
following RANS/LES/DES equations:  

 ˆ= 0, ( ) = .tp
t


     

vv v v v  (1) 

Here = ( , , ) = x yx y t u v  v v e e  is the dimensionless Reynolds averaged of filtrated 
velocity, = ( , , )p p x y t  is the dimensionless Reynolds averaged of filtrated pressure, 

= 1/ Re  is the dimensionless viscosity, ˆt  is the Reynolds or subgrid stresses tensor. 
The relationship between ˆt  and flow Reynolds averaged or filtrated variables is given 
by the turbulence model. 

Flow around a fixed airfoil in com-
putational domain   with boundary =  

    1 2 3 4    is considered (Fig. 1). 
In all our simulations, the upstream and 
outflow boundaries are set at the distances 
8D and 15D, respectively, from the airfoil 
center, and the blockage ratio is equal to 
1/12. The previous studies have shown that 
such computational domain is sufficiently 

wide to obtain results that are don’t depend on the domain size.  

Fig. 1. Computational domain 
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We denote the airfoil boundary as .K  Then the boundary conditions are the 
following:  

    



1 2 3

4

| = , = 0, | = .ib
K

vv v v v
n

 

It is possible to distinguish the linear turbulence scale = ( )turb turbl l r  for all 
turbulence models. In the framework of RANS approach this scale turbl  is equal to 
scale = ( ),RANS RANSl l r  which is determined by the turbulence model (Table 1).  

Table 1 
Turbulence scale RANSl  for some turbulence models [3] 

Turbulence model RANSl  Comments 

Spalart — Allmaras [4] wd  wd  is the distance between the field point and  
the nearest wall  

 k  [5] 3/2 1k    is the dissipation rate of the turbulent kinetic 
energy k 

k  [6],  k  SST [7]  1/2 * 1( )k   is the specific dissipation rate of the k, 
 * 0.09   

In case of LES approach, the scale turbl  is equal to subgrid scale:  

 = .LES LESl C  (2) 

Here  = ( )r  is the characteristic filter size at the point of computational domain 
with the radius vector ,r  and LESC  is the empirical constant, which choice depends 
on the turbulence model and numerical method used to solve the problem (1) in the 
whole. Within the DES approach the linear turbulence scale turbl  is equal to hybrid 
linear scale  

 = min{ , }.DES RANS DESl l C  (3) 

Here DESC  is the empirical constant similar to ,LESC  and the maximum of the mesh 
steps at the point of computational domain with the radius vector r  is used as the 
characteristic filter size  = ( ).r  Thus, DES operates as RANS in the domain where 
the mesh is too coarse and not suitable for resolving turbulent structures, i. e. at 

> ,DES RANSC l  and DES operates as subgrid model for LES in the domain where the 
grid is sufficiently fine [3]. It should be noted that Smagorinsky model is used only 
within LES approach. 

In this paper Eddy Viscosity turbulence models (EVM) are considered. In EVM 
models the eddy viscosity t  (and the turbulent kinetic energy k  in case of two-
equation models) is simulated and Reynolds or subgrid stresses are evaluated using 
the Boussinesq eddy viscosity assumption [3]:  

  
     

 
2 2= 2 ; = 2 ;
3 3

t t t t
xx yy

u vk k
x y

 (4) 
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    
     

τ .t t
xy

u v
y x

 (5) 

Here t
xx  and t

yy  are normal Reynolds or subgrid stresses and t
xy  is shear Reynolds 

or subgrid stress. In cases of algebraic turbulence models or models with one 
differential equation the turbulent kinetic energy is assumed to be zero and only eddy 
viscosity value is computed. For example, in the Smagorinsky model [8] the eddy 
viscosity is defined by the following formula:  

 
2 22

2= ( ) 2 .t
S

u v u vC
x y y x

                              
 (6) 

Here SC  is the empirical constant (the Smagorinsky constant). Choice of the SC  value 
depends on the numerical method used to solve the problem, because at LES approach 
the accuracy of large-scale vortex structures resolution depends not only on the mesh, 
but also on numerical method properties, in particular, numerical dissipation. If the 
numerical dissipation is large, it is necessary to choose smaller values of ,SC  and if 
numerical dissipation is small, the SC  value should be chosen larger. 

For EVM with differential equations the governing equations, initial and 
boundary conditions are given by the turbulence model. In the most general way, they 
may be written as the following:  

 


   



        




     


0 1 2 3
4

( ) = Prod Dis [( ) ] Add;

( , 0) = ( ), | = , | = , = 0.ib
K

t
v

r r
n

 (7) 

Here Prod  is the production term which describes the generation of Reynolds or 
subgrid stresses; Dis  is the destruction term; Add  is the additional term;   and   
are given by the particular turbulence model (Table 2). 

Table 2 

Itemization of symbols in (7) and rules for t  computation for some turbulence  
models [3] 

Term Spalart — 
Allmaras  k  k  k  SST 

    k    k    k    
Add  0 0 0 0 0 0  1(1 ) kF D  
Prod  P  P  1.44 P

k
 

P  5
9

P
k

 
P  


1(0.44 0.11 )

t
F P  

Dis  D  3/2

turb

k
l

 21.92
k

 
3/2

turb

k
l

 23
40

 
3/2 / turbk l   10.0828 0.0078F  

    t   /1.3t   / 2t   / 2t   1(1 0.5 ) tF   1(0.856 0.356 ) tF  
t   1f  20.09 /k  /k  10.31 /k G  
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The following designations are introduced in Table 2:   is the Spalart — 
Allmaras (S-A) working variable [4];   is the dissipation rate of the turbulent kinetic 
energy ;k    is the specific dissipation rate of ;k   

 
4

1 2 2
500 3.424= tanh min max , , ;

0.09 w w k w

k kF
d d CD d

                    
  

 20= max( ,10 );k kCD D 
     1.712= ;k

kD 
 


 

2= 0.1355[1 ] ;tP f S     20.5
2 =1.2 ;tf e   = ;




 2 2= ;
0.1681 turb

u vS f
y x l
  

 
 

  

 2
1

=1 ;
1

f
f






 

3
1 3= ;

357.911
f


 

 = ;t t t
xx yy xy

u v u vP
x y y x

               
  

  
2

2= 3.2391 0.8061 ;w t
turb

D f f
l

    
 


 

1/6

6
65= ;

64wf g
g

 
  

 6= 0.3( );g r r r   

 2= min ,10 ;
0.1681 turb

r
Sl

 
 
 


  1 2= max 0.31 , ;u vG F

y x
  

    
 

  
2

2 2
2 500= tanh max , .

0.09 w w

kF
d d

             
 

Modification of the LS-STAG immersed boundary method. The Cartesian 
mesh with cells , 1 1= ( , ) ( , )i j i i j jx x y y    is introduced in the rectangular 
computational domain  .  It is denoted that ,i j  is the face of ,i j  cell and 

, = ( , )c c c
ii j jx yx  is the center of this cell, which is called "base mesh". Pressure is 

computed in the center of , .i j  Unknown components ,i ju  and ,i jv  of velocity vector 
v  are computed in the middle of fluid parts of the cell faces. These points are  
the centers of control volumes 11, = ( , ) ( , )u c c

j ji ii j x x y y   (x-mesh) and , =v
i j  

1 1( , ) ( , )c c
i i j jx x y y     (y-mesh) with faces ,

u
i j  and ,

v
i j  and squares x

ijM  and , ,y
i jM  

respectively (Fig. 2). 
The level-set function = ( ) = ( , )x y  r  [9] is used for immersed boundary ib  

description [2]:  

 
( ) < 0, = \{ };
( ) = 0, ;
( ) > 0, .

f ib ib

ib

ib

    

 

 

r r
r r
r r
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Fig. 2. Staggered arrangement of the variables on the LS-STAG mesh 

The boundary ib  is represented by a line segment on the cut-cell  ,i j  (Fig. 3). 
Location of this segment endpoints is defined by a linear interpolation of the variable 
 , = ( , ).i j i jx y  The cell-face fraction ratios  ,

u
i j  and  ,

v
i j  are introduced [2].  

They take values in interval [0,1] and represent the fluid parts of the east and 
north faces of  , ,i j  respectively. The cell-face fraction ratios are defined by a one-
dimensional linear interpolations of function ( , )ix y  in interval 1[ , ]j jy y  and 
( , )jx y  in interval 1[ , ] :i ix x   

 

 

 


    
, 1 ,

,
, 1 , , 1 ,

min( , )
= ;

min( , ) max( , )
i j i ju

i j
i j i j i j i j

 

 

 


    
1, ,

,
1, , 1, ,

min( , )
= .

min( , ) max( , )
i j i jv

i j
i j i j i j i j

 

Fig. 3. Example of the cut-cell on the LS-STAG mesh 
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In 2D case, the cut-cells can be classified into trapezoidal, triangular and 
pentagonal cells. Examples of each type cut-cells are shown on Fig. 4. 

To preserve the five-point structure of the stencil of the MAC method, which can 
be considered as some kind of ''predecessor'' of the LS-STAG method, we need  
to make distinction between the discretization of the normal and shear stresses [2]  
(Fig. 4). It is conveniently to sample the eddy viscosity ,t  the turbulent kinetic 

energy ,k  the dissipation rate of the kinetic energy,   and the specific dissipation rate 
of kinetic energy   at the same points as the shear stresses. Thus, in case of the  
LS-STAG method usage for RANS-based models the fourth mesh (xy-mesh) with cells 

1, 1=( , ) ( , )xy c c c c
i ii j j jx x y y    is needed. The faces of these cells are ,

xy
i j  (Fig. 2) and their 

areas are , .xy
i jM  If i  and j  take values from ranges 1, ..., N  and 1, ..., ,M  respectively, 

the base mesh contains =E NM  cells, x-mesh contains =( 1)xE N M  cells, y-mesh 
contains = ( 1)yE N M   cells and xy-mesh contains = ( 1)( 1)xyE N M   cells. 

It is possible to assign a weight ,i j  to each cell ,i j  of the base mesh:  

 


 


,

, ,

0, if is the solid cell;
= 1/ 3, if is the triangular cell;

1/ 4, otherwise.

i j

i j i j  

Fig. 4. Location of the variables discretization points in case of base types cells of the LS-STAG
                                                                      mesh: 
a — Cartesian Fluid Cell; b — North Trapezoidal Cell; c — Northwest Pentagonal Cell; d — Northwest
                                                                                Triangle Cell 
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Then ,
xy
i jM  can be expressed through the area of base mesh cells:  

         , 1 , 1 1, 1, , , , 1 , 1, = .xy
i j i j i j i j i j i j i j i ji jM V V V V  

Here ,i jV  is the area of the cell  , .i j  
Since t  and shear Reynolds or subgrid stresses (5) are sampled at the same 

points, it follows that  

 
  

      
, ,

,,
| = ,t t

xy i j i j
i ji j

u v
y x

 (8) 

whereas averaged values of turbulent viscosity  ,
t
i j  and the turbulent kinetic energy 

,i jk  should be used for the computation of the normal Reynolds or subgrid stresses 
(4):  

  
     

 
,, , ,, ,

, ,

2 2| = 2 ; | = 2 ;
3 3

t t t ti jxx i j yy i j i ji j i j
i j i j

u vk k
x y

 

                   , , , , , 1 1, 1, 1, , , 1 1, 1, 1= ( ); = ( ).t t t t t
i j i j i j i j i j i j i ji j i j i j i j i j k k k k k  (9) 

Formulae for normal stresses 
 ,i j

u
x

 and 
 ,i j

v
y

 computation are the following:  

      


 
, 1,, 1, 1, , ,

,,

( )
;

/

u u u u ib
i j i ji j i j i j i j i j

i j ji j

u u uu
x V y

 

 
     


 

, , 1, , 1 , 1 , ,

,,

( )
.

/

v v v v ib
i j i ji j i j i j i j i j

i j ii j

v v vv
y V x

 

formulae for shear stresses 
 ,i j

u
y

 and 
 ,i j

v
x

 computation depend on the type of  ,
xy
i j  

cell:  

 






 






 
    
   


       


  

  

, 1 ,
, , 1

1, 1 ,
,

, 1 , 1
, , 1

1, 1, ,
,

,,
, , 1

,,

, if 0, 0;
( ) / 2

( , )
= , if = 0, 0;

/ 2

( , )
= , if 0, = 0;

/ 2

i j i j u u
i j i ju u

j ji j i j
ib s ib

i j i i j u u
i j i ju

ji ji j i j
ib n ib

i i ji j u u
i j i ju

ji ji j

u u
y y

u u x yu u
y y y

u x y uu
y y





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




 






 
       

        


  

  

1, ,
, 1,

11, ,
,

1, 1,
, 1,

11,, ,
,

,,
, 1,

,,

, if 0, 0;
( ) / 2

( , )
= , if = 0, 0;

/ 2

( , )
= , if 0, = 0.

/ 2

i j i j v v
i j i jv v

i ii j i j
ib w ib

i j ji j v v
i j i jv

ii ji j i j
ib e ib

j i ji j v v
i j i jv

ii ji j

v v
x x

v v x yv v
x x x

v x y vv
x x






 

Components of hydrodynamic force acting on the immersed boundary can be 
computed as the following:  

 


    
            

 ,1, , ,
,cut-cells ,

= ( ) Quad ;u u ib
xa j i ji j i j i j

ib i ji j

u uF y p
x y ye n  

 


                 
 ,, , 1 ,

сut-cells ,,

= Quad ( ) .ib v v
ya i i ji j i j i j

ib i ji j

v vF x p
x yxe n  

Here xaF  is the drag force, yaF  is the lift force,   1= ,i i ix x x    1= ,j j jy y y  

,Quadib
i j  is the quadrature of the shear stresses. ,Quadib

i j  has to be adapted to each type 
of cut-cells. This quadrature is based on the location of point where the shear stresses 
are sampled in Fig. 4 and the trapezoidal rule. 

It is conveniently to sample the linear turbulence scale turbl  and the characteristic 
filter size   for LES and DES at the same points as the t  and .k  We recall that the 
maximum mesh step at the given point of the computational domain is used as a filter 
size   for DES approach. Since we deal with xy-mesh, the characteristic filter size is 
defined as a following:  

           max
, , 1, , 1, , 1 , , 1= = max{ , , , , , },xy xy xy xy xy xy

i j i j i j i j i j i j i j i jy y y x x x  
where  

       1, , , 1
1= ;
2

xy u u
j ji j i j i jy y y         1, , 1,

1= .
2

xy v v
i ii j i j i jx x x  

Within LES approach the following filter can also be used on the LS-STAG mesh:  

  , , ,= = .xyvol
i j i j i jM  

According to the concept of the LS-STAG method, equations (1), (7) should be 
written in integral form for cell of base mesh, cell of x-mesh, cell of  y-mesh and cell of 
xy-mesh, respectively:  

 



,

= 0;
i j

dSv n  (10) 
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      

   

             
, , , ,

( ) = ( )( ) (Prod Dis Add) .
xy xy xy xy
i j i j i j i j

d dV dS dS dV
dt

v n n  (11) 

In case of fixed immersed boundaries by analogy with the LS-STAG 
discretization of Navier — Stokes equations [2] the general form of the LS-STAG 
discretization for (10), (11) can be written as the following:  

  

 

 

      
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, ,
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( ) ( ) = 0;

ibx y
x y

x x x x ib c ib
x x xx x xy x x x

y y y y ib c ib
y y yy y xy y y y

D U D U U
d M U C U G P T D T K U S S
dt
d M U C U G P T D T K U S S
dt

 (12) 

     


 

        

   

  , ,[ ] [ , ] [ ]

[ , , ] = 0.

nxy xy n ib c n ib xy n n
xy

n ib xy n
xy

d M C U S K G
dt

S G M PDA
 (13) 

Here P  is the discrete pressure, xU  and yU  are the discrete components of the 
velocity vector, xyT  is the discrete shear Reynolds or subgrid stresses, xxT  and yyT  are 
the discrete normal Reynolds or subgrid stresses,   is the discrete ,    is the 

discrete  ;  
ib

U  denotes the mass flux arising in case of  ;ibv 0  , ,ib c
xS  , ,ib

xS  , ,ib c
yS  

, ,ib
yS  , ,ib c

xyS  
xyS  are source terms; ,xK  yK  and xyK  represent the discretization of the 

diffusive terms; ,xD  ,yD   ,xD  
yD  are the divergence discrete analogues on the 

corresponding meshes; ,xC  yC  and xyC  represent the discretization of the convective 
terms; =x T

xG D  and =y T
yG D  are the gradient discrete analogues; PDA  is the 

discrete analog of  (Prod Dis Add);      ,= [ , ]xy ib g ibG G S  is the discrete 
analogue of  / x  and  / y  which are computed in the middle of  ,i j  fluid 
faces. 

The time integration of the differential algebraic system (12) is performed with a 
semi-implicit projection method based on the Adams — Bashforth/second-order 
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backward differentiation formula (AB/BDF 2) scheme. Predictor step leads to discrete 
analogues of the Helmholtz equation for velocities prediction  ,xU   yU  at the time 

  1 = ( 1) :nt n t   
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Here t  is the constant time discretization step. Corrector step is the following:  
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    
It leads to the following discrete analogue of Poisson equation for pressure 

function   1= 2 ( )/3:n nt P P   

 


     , 1
,

ib n
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  1 1= ( ) ( ) ( ) ( ) .x x x T y y y TA D M D D M D  Then flow variables at the time point 1nt  
are computed by the following formulae:  

   1 1= ;n T
x x x xU U M D    1 1= ;n T

y y yU Uy M D   



1 3= .

2
n nP P

t
 (16) 

After this, new values of Reynolds or subgrid stresses 1,n
xxT  1,n

yyT  1n
xyT  are 

computed according to (8), (9) by solving the discrete analogues of the equations 
from the used turbulence model:  

 

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 

 
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Numerical experiments. The flow past circular airfoil was simulated using the 
developed modification of the LS-STAG method. The time averaged drag coefficient 

DC  and the Strouhal number St  were computed. The coefficient DC  was obtained by 

averaging over a large period of time the unsteady load 
 2
( )( ) = .
/ 2

xa
D

F tC t
V
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Flow simulation at low Reynolds numbers ( 3Re <10 ). The LS-STAG method 
allows to receive the results are in good agreement with the experimental and 
computational data, even on very coarse meshes (Table 3). No turbulence models 
have been used. 

Table 3 

Comparison of DC  and St at Re = 100  and Re = 200  with known experimental  
and numerical results from the literature 

Source 
Re 100= Re 200=  

DC St DC St
Zdravkovich [10] (experiment) 1.21…1.41 0.16…0.17 – – 
LS-STAG (present study, 120 148)  1.31 0.17 1.33 0.20
LS-STAG (present study, 240 204) 1.32 0.17 1.33 0.20
LS-STAG (present study, 480 408) 1.32 0.17 1.33 0.20
Cheny [2] (LS-STAG, 550 350)  1.32 0.17 1.33 0.20
Henderson [11] 1.35 0.16 1.34 0.20 
He [12] 1.35 0.17 1.36 0.20 

Flow simulation at medium Reynolds numbers ( 3 4Re =10 10 ). The flow was 
simulated at the Reynolds numbers Re =1000  (on non-uniform meshes 120 148  with 

2= 5 10t    and 240 296  with 3=10t  ) and Re = 3900  (on non-uniform meshes
120 148  with 3=10t   and 240 296  with 4= 5 10t   ). These values of the Re  were
chosen because the experimental data [10, 11] and results of other researchers [14–17] are
known for them. Computational results are shown in Table 4 and in Fig. 5. These results
are in good agreement with experimental data for simulation on coarse meshes by using
the proposed modification of the LS-STAG method. But since the considered models
works well only at high Reynolds numbers, it is hardly possible to improve the numerical
results, for example, by mesh refinement. In our opinion the wall functions usage can be
an efficient solution to this problem.

Table 4 

Comparison of DC  and St values with known experimental and numerical results 

Turbulence model Number 
of cells 

Re 1000=  Re 3900=
DC St DC St

Experiment [10] − 0.98 0.21 0.93 0.22 
Experiment [13] − 1.12 – 1.01 – 
Smag., LES, CS = 0.1 [14] 1 103 520 – – 1.08 – 
Smag., LES, CS = 0.1 (spectral) [15] 30 720 – – 1.01 0.22 
Smag., LES, CS  = 0.1 (finite volume) [15] 855 040 – – 1.07 0.24 
 ,k  RANS [16] 46 304 1.00 0.15 1.00 0.15 

Real  ,k RANS [16] 46 304 – 0.17 – 0.20 
k   SST, RANS [16] 46 304 – 0.23 – 0.25 
 ,k RANS [17], ANSYS 388 550 1.12 – 0.74 – 

k   SST, RANS [17], ANSYS 388 550 0.99 – 0.62 –
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End of Table  4 

Turbulence model Number 
of cells 

Re 1000=  Re 3900=
DC St DC St

Smag., LES, CS = 0.1 [17], ANSYS 388 550 1.15 0.21 1.07 – 
Smag., LES,  max= ,  = 0.2,SC
present study 

71 040 1.35 0.24 1.11 
0.26 

Smag., LES,  max= ,  = 0.5,SC
present study 

71 040 1.37 0.25 1.10 
0.25 

S-A, RANS, present study 71 040 1.37 0.25 1.13 0.25 
S-A, DES, = 0.7,SC  present study 71 040 1.37 0.25 1.11 0.25 
 ,k  RANS, present study 71 040 1.36 0.25 1.23 0.28 
 ,k  LES,  max= ,  = 0.9,SC  present 

study 
71 040 1.37 0.25 1.11 

0.25 

,k  RANS, present study 71 040 1.32 0.24 1.18 0.24 
,k  DES, =1.0,SC  present study 71 040 1.32 0.25 1.00 0,25 

k   SST, RANS, present study 71 040 1.34 0.25 1.14 0.25 

Fig. 5. Computed unsteady load ( )DC t  and ( )LC t  (RANS, k  model, mesh 240 296):
a — Re =1000 ; b — Re = 3900  

Fig. 6. Comparison of the drag coefficient computed values with experimental [18]  
and computational data on meshes M1–M5 [19] and [20]: 

             — Wieselsberger [18];                —   Henderson, 2D calculations [20];      — mesh M1;  + — mesh 
M2; ☐ — mesh M3; × — mesh M4 with Smagorinsky model; Δ — mesh M4; * —  mesh  M5;      —  

    LS-STAG (k – , RANS, 240×296);       — LS-STAG (480×592)  
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Flow simulation at high Reynolds numbers 5 7(Re = 10 10 ). The flow was 
simulated at the Reynolds numbers 5 7Re = 10 10  (on non-uniform meshes 
240 296  with 4= 5 10t    and 480 592  with 4= 10t  ). Results obtained on mesh 
480 592  are very close to experimental data [18], see Fig. 6. At 5Re = 2 10 ,  the 
boundary layer on the cylinder surface undergoes a transition from laminar to 
turbulent [19]. This transition leads to a delay of the separation of flow from the 
cylinder surface causing a substantial reduction in the drag force. This is often 
referred to as ''drag crisis''. This phenomenon was simulated by using modified  
LS-STAG immersed boundary method (Fig. 6). 

Conclusions. The key points of the LS-STAG method [2, 21] extension for 
RANS/LES/DES turbulence models were described. For the shear Reynolds stresses 
and for the eddy viscosity an additional mesh (xy-mesh) is introduced. The general 
approach to the construction of the LS-STAG discretization for differential equations 
of the EVM models on the additional xy-mesh shown. The Smagorinsky, Spalart — 
Allmaras, ,k   k   and k   SST turbulence models are considered. To validate 
modified LS-STAG immersed boundary method the flow past a circular airfoil at 

2 7Re = 10 10  was simulated. Computational results are in good agreement with 
established results from the literature. Also, the so-called ''drag crisis'' phenomenon of 
circular cylinder at 5 6Re = 10 10  was simulated. 
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