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Abstract Keywords 
In this paper, based on the solution of the Boltzmann 
kinetic equation, we determine the energy distribution 
function describing the steady-state deceleration  
of the cascade of moving atoms taking into account their 
multiplication at the power interaction potential 

.~1/ nU r  A new approach to the solution of the kine-
tic equation based on the extended concept of primary 
knocked-on atoms (PKA) is used for its calculation. One 
of the advantages of using the power interaction 
potential is that in this case it is possible to obtain simple 
analytical formulas for the distribution function of the 
cascade of slowing-down atoms taking into account 
their multiplication and demonstrate the simplicity and  
convenience of the proposed new approach to the 
solution of the kinetic equation. On the other hand, 
based on the obtained results it is possible to estimate 
the accuracy of various approximate solutions. It is 
shown that this approach will be applicable to other 
interatomic interaction potentials, if the average PKA 
energy loss in individual collisions decreases mono-
tonically with decreasing energy, and the relative PKA 
energy loss in individual collisions will be small 
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The development of nuclear reactors and thermonuclear installations involves 
the selection of radiation-resistant materials as their bodies and individual ele-
ments must withstand long-term exposure to radiation. Irradiation of solids by 
fast particles (neutrons, fast ions) leads to the fact that the atoms of the crystal lat-
tice received from the incoming particle energy greater than a certain threshold 
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value fly out of their equilibrium positions. Further, the exchange of energy  
between moving atoms and atoms located in the nodes of the crystal lattice leads 
to the emergence of new generations of knocked-on atoms. Thus, there is a so-
called cascade of atomic collisions. As a result of the cascade development 
the primary point defects (vacancies, interstitial atoms) are formed in the solid 
body, which determine the accumulation of radiation damage in irradiated mate-
rials and subsequent changes in their physical and mechanical properties [1, 2].  

For the correct description of these processes, it is necessary the infor-
mation on the nature of the energy distribution of the decelerating cascade of 
moving atoms. A significant number of works are devoted to the study  
of the development of atomic collision cascades in a solid, for example [3−9]. 
To be noticed is that the authors of works [7, 8] found a distribution function 
that describes the energy distribution of a cascade of moving atoms taking into 
account their multiplication for the simplest special case of elastic spherically 
symmetric scattering in the system of the center of mass without taking into 
account the binding energy of atoms in the lattice sites. There are no previous 
results for more complex interaction potentials of simple analytical solutions 
describing the cascade of decelerating atoms.  

In this paper, based on the solution of the Boltzmann kinetic equation we 
determine the energy distribution function describing the steady-state decelera-
tion of the cascade of moving atoms taking into account their multiplication at 
the power interaction potential ~1/ nU r  [10]. A new approach to the solution of 
the kinetic equation based on the extended concept of primary knocked-on atoms 
(PKA) is used for its calculation. Henceforward, the PKA is that atom, which after 
the collision has more energy [6−9]. An atom with lower energy will be called 
the target atom (or knocked-on atom). 

One of the advantages of using the power potential of interaction is the possi-
bility of obtaining simple analytical formulas for the distribution function  
of the cascade of decelerating atoms taking into account their multiplication, 
which makes it possible to demonstrate the simplicity and convenience of 
the proposed below new approach to the solution of the kinetic equation. Using 
the results that we obtained it is also possible to estimate the accuracy of various 
approximate solutions. 

Note that in the work [11] the authors determined the spatial and time 
characteristics of the primary knocked-on relativistic electrons (PKRE) 
decelerating in the substance due to ionization losses: the dependence of 
the PKRE energy on time, the dependence of the energy of the decelerating 
PKRE on the distance covered and the dependence of the distance covered  
by PKRE on the deceleration time. 
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Problem statement. Consider a solid body consisting of atoms of the same 
type, whose binding energy at the nodes of the lattice is .d  Let us study in more 
detail the interaction between a moving atom and an atom located in a lattice 
node. Let the moving atom with energy E' as a result of collision with an atom  
of the crystal lattice becomes a state with energy E, by transmitting energy  
to the atom located in the node of the crystal lattice, .dE E     In this case, there 
is only one of two possible events can be realized: 1) the energy of a moving atom 
Е after elastic scattering, there may be more energy of the knocked-on atom 

;dE E     2) the energy knocked-on of an atom dE E     there may be more 
energy from the moving atom after the impact. 

The kinetic equation describing the unsteady energy distribution of mov-
ing atoms (both PKA and knocked-on) from an instantaneous uniformly 
distributed over the space of a monoenergy source without taking into account 
their collisions with each other is written as [12] 
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where ( , )f E t dE  is number of atoms with energy E  in the range dE  at time  t 
per unit volume; ( )E  is full macroscopic cross section of atomic scattering; 

( , ) ( , )Е t vf E t   is the flow of moving atoms, v  is the atoms' speed; ( )E E   
is macroscopic cross section of atomic scattering; (x) is  the Dirac Delta function; 

0N  is total number of atoms; 0E  is initial energy of moving atoms; η (x) is   
Heaviside unit function, 
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The first integral on the right side of the kinetic equation (1) describes 
the transition of a moving atom with energy E' to the state with energy E.  
In this case, the knocked-on atom receives kinetic energy .dE E   
The second integral describes the formation of a knocked-on atom with energy 
E, when a moving atom moved into a state with energy .dE E     

According to the terminology adopted above, we consider PKA to be the 
one that has more energy after each act of interaction. Obviously, contribu-
tions to the kinetic Eq. (1) from both the first and the second integral should 
be taken into account when the condition is met dE E E     or 
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2 .dE E     In this case, the kinetic equation describing the energy distribu-
tion of PKA will be written as [7, 8]:  

− at 0
2
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Based on the law of conservation of energy from Eq. (2) in the works [7, 8] 
the authors found that the average energy loss of PKA in a separate collision at 

dE    described by the expression for 
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where ( ) ( ) ( )P E E E E E        is the probability of transition of a mov-
ing atom in interaction with a stationary atom from a state with energy E  
in a state with energy E in a single interval of energies. 

The result (3) has the following interpretation. Broken atoms can be formed 
when .dE    If atom with energy ,Е  colliding with the lattice atom acquires 
energy E lying in the interval from ( ) 2dE    till ,Е  then it knocked-on 
the atom has less energy, and then it is not considered. In this case, the energy loss 
of the moving atom will be ( ),Е Е   which reflects the first term in (3).  
If the incoming atom with energy Е  as a result of the interaction, it moved into 
a state with energy Е, lying in the interval 0…( ) 2 ,dE   the great energy  
acquired knocked-on atom, which are followed in the future. The atom itself  
with energy Е excluded from consideration, so that the loss of energy is ( ),dE     
and what reflects the second term in the formula (3). 

Exact analytical solution of Eq. (2) for a simple special case of elastic, 
spherically symmetric in the system of the center of mass of scattering of parti-
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cles with the same mass at 0d   obtained in the works [7, 8]. The solution of 
Eq. (2) for the power potential of interaction between atoms will be obtained 
below and the distribution function describing the steady-state deceleration of 
the cascade of moving atoms taking into account their multiplication will be 
determined on its basis. 

Characteristics of the deceleration process of moving atoms. For the power 
potential of interaction between atoms 1/ nU r  the differential cross section  
of the scattering of a moving atom on the lattice atom is written as [10] 

 0 1
1( ) ,
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E E E 

   
  

 (4) 

where 0 const;   1 / .m n   
Using (4), we find the complete macroscopic cross section 
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In obtaining the formula (4) it was assumed that the energy of a moving 
atom exceeds the binding energy of the atom at the lattice site .dE    

Using (4), (5), the formula (3) can determine the average energy loss of PKA 
energy in a separate collision. In a dimensionless form with 0( ) d      is 
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Here dE    — the dimensionless energy. 
The relative energy losses of the moving PKA in a separate collision are 

determined by the ratio    

 ( )( ) . 
  


 (8) 

Energy dependence of the average energy losses of PKA in individual colli-
sions, constructed by formulas (6), (7) for various exponents n (respectively  
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m = 1; 2/3; 1/2; 2/5; 1/3; 1/4), shown in Figure, а. The average energy losses 
when decelerating PKA decreases and have a maximum value when the initial 
energy. This value can be found by formulas (6), (7), taking 1:  

− at 1m    

 0ln 1;
4m

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It should be noted that the calculations carried out by the formulas (9), 
(10) are in good agreement with the results shown in the Figure, а. 

 According to the accepted terminology, PKA transmit energy to knocked-
on atoms, the latter appear only at energies .m    Consequently, in the field 
of energy m    there are only PKA and in this area their distribution func-
tion describes the entire cascade of decelerating atoms. Thus, in the field of 
energy 

 0m      (11) 

the energy distribution of the cascade of decelerating atoms taking into ac-
count their multiplication is described by the PKA distribution function, 
which is the solution of Eq. (2). 

It should be noted that in the works [7, 8] the authors found exact solu-
tions of Eq. (1), (2) for a simple special case of elastic, spherically symmetric 
scattering in the system of the center of mass without taking into account 
the binding energy of atoms in the lattice nodes. In this case, the PKA distribu-
tion function (solution of Eq. (2)) coincided in the energy region (11) with 
the energy distribution of the cascade of decelerating atoms taking into ac-
count their multiplication (solution of Eq. (1)). 

The energy dependence of the relative energy losses of PKA in individual 
collisions, built on the formula (8) using the results (6), (7), is shown in 
the Figure, b. The relative energy losses of the decelerating PKA in individual 
collisions are small, which makes it possible to use the approximation of con-
tinuous energy losses to determine the distribution function of the decelerat-
ing PKA [12]. 

The stationary distribution function of decelerating the primary 
knocked-on atoms. Since the relative energy losses of the decelerating PKA in 
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Energy dependences of average energy 
losses of PKA in separate collisions, 
constructed by formulas (6), (7) (а)  
and (8) using the results (6), (7) (b),  

class of PKA distribution functions (c)  
at value n = 1 (1), 1,5 (2), 2 (3), 2,5 (4),  

3 (5), 4 (6) 
 

 
a separate collision are small, the approximation of continuous energy losses can 
be used to determine the stationary solution of Eq. (2) [12]. In this approx-
imation, the stationary distribution function of decelerating PKA is written  
as [12] 

 0 0 0

0
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S E E SE

E E E
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  

 (12) 

where 0S   is the number of PKA emitted by a source per unit time per unit  
volume. 

In expression for (12), the first term describes the scattered radiation  
emitted by the source, i.e., atoms with energy 0 ,E  and the second-the scattered 
radiation, i.e., atoms slowed down further to lower energies.  

Using (5)−(7), the distribution function (12) can be represented in dimen-
sionless form: 
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− at 1m   
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where  2 10 0 m
dS     .  

Family of PKA distribution functions (second term in (13), (14)) for sever-
al exponents n  shown in Figure, c. In the energy range (11), this result is 
the energy distribution of the cascade of decelerating atoms taking into ac-
count their multiplication. 

Summary. In this paper, based on the solution of the Boltzmann kinetic 
equation we determine the energy distribution function describing the steady-
state deceleration of the cascade of moving atoms taking into account their 
multiplication at the power interaction potential ~1/ nU r  [10]. A new ap-
proach to the solution of the kinetic equation based on the extended concept 
of primary knocked-on atoms (PKA) is used for its calculation. This approach 
can also be applied to other interatomic interaction potentials if the average 
PKA energy losses in individual collisions decrease monotonically with de-
creasing energy, and the relative PKA energy losses in individual collisions are 
small. In this case, the distribution function describing the steady-state de-
celeration of the cascades of moving atoms taking into account their multipli-
cation in the energy region (11) will be determined by the expression for (12),  
in which the values of Σ( )E  and 0Δ ( )E  are found by expressions for (3), (5). 

Translated by K. Ivanova 
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