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Abstract Keywords 
The Moon, like Earth, is not completely solid, and 
experiences deformation changes, for example due to 
the tides, caused by the gravitational pull of the Earth’s 
orbit in a complex and resonant nature of the motion  
of the Moon. It is shown that these deformations lead to 
temporary variations of Moon inertia tensor compo-
nents and consequently to the variations in the mo-
vement of the poles of the Moon, as well as to the 
variations of axial rotation. The indicated variations 
module is in the order of 10–12 mas (millisecond of arc). 
There variations are important for the development  
of the high-precision theory of lunar physical libration, 
suitable for modern projects for the reclamation of the 
Moon, in particular the Japanese project ILOM, which 
contemplates installing the telescope on the lunar 
surface and determining its orientation accuracy of the 
order of 1–0.1 msd, as well as the Russian lunar 
program, providing the launch of five automatic stations 
to the Moon in 2019–2024 
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Introduction. The research of the physical librations of the Moon caused by its 
tidal deformations has been performed. The gravitational field of the Moon is 
considered in the framework of the classical Newton theory. The study is based 
on the Liouville equations and the equations of motion of a weakly deformable 
celestial body in Andoyer variables [1, 2]. In this case, the values of temporal 
(tidal) variations of the coefficients of the second harmonic of the 
selenopotential, given in Ref. [3], are used. The solution was found by the 
perturbation method and is presented in analytical form in Andoyer variables; 
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expressions for the variations of the angular velocity components were also 
obtained. The amplitudes and periods of physical librations of the Moon caused 
by its tidal deformations were estimated. 

The solution of the Moon’s librations task was obtained using two 
coordinate systems associated with this celestial body K K KC  and .C  
The axes of these coordinate systems correspond to the principal central axes of 
inertia of the Moon, but to different values of the moments of inertia. The 
corresponding axes of these two coordinate systems coincide and there are 
simple relations between them: ,KC C  ,KC C  ,KC C  which 
allow establishing relations between two sets of selenopotential constants, 
defined in the considered coordinate systems. Here, the parameters with the “K” 
index correspond to the classical selenographic coordinate system ,K K KC  
and the parameters without an index, to the principal axes of inertia used in 
solving the Liouville equations in Andoyer variables. For the principle moments 
of inertia, these relations have the form ,KA A  KB C  and ,KC B  and for 
the constants of the second harmonic the selenopotential  
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The inverse formulas of the specified transformation (1) take the form 
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The relations (1) and (2) are used in interpreting the obtained decision on 
the librations of the Moon due to its tidal deformations. We’ll obtain the 
solution using the parameters (2) without the “K” index, and then convert the 
resulting solution to the parameters (1) for the classical (basic) selenographic 
coordinate system .K K KC  

Formulation of the problem. Due to the rotational deformation of the 
Moon, the polar moment of inertia of a celestial body increases by 
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and the equatorial moments of inertia decrease by the same magnitudes, but 2 
times smaller in comparison with C  [3, 4]. Here  is the angular velocity of 
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rotation of the Moon; 0r  is the average radius of the Moon; 2k  is the Love 
number;  f  is the gravitational constant. 

To describe the temporal variations of the selenopotential coefficients, let’s 
introduce the dimensionless deformation parameter 
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where m  is mass of the Moon. At the same time, the elastic Moon rotates as 
an absolutely rigid body [1, 2], but with modified inertia moments 

 2
03 ;KА A D mr  2

03 ;KВ B D mr  .KС C  (3) 

Here, , ,K KA B  KC  are the principle moments of inertia of the Moon, which 
are determined by observations and can be expressed in terms of the mean 
values of the selenopotential coefficients. If the dimensionless polar moment of 
inertia I  would be introduced by the formula 2

0 ,KC Imr  then the expres-
sions for the moments of inertia can be obtained from formulas (1)–(3): 

 2
20 22 02 ;K KKA I C C mr  2

20 22 02 ;K KKB I C C mr  2
0 .C Imr  (4) 

The expressions for variations of moments of inertia of the Moon can be 
written if the classical condition for temporal variations of axial moments of 
inertia 0K K KA B C  is fulfilled (it corresponds to subsurface mass 
redistribution) for a changeable celestial body 

 
22 2 22 2 2

22 21 21

2 1 2 1 2; ; ;
3 3 3

2 1 1; ; .

A B CC J C J J
C I I C I I C I

F E DS C S
C I C I C I

   (5) 

Tidal variations of the selenopotential coefficients were obtained on the 
basis of the solution of the classical tidal deformation problem of a celestial 
body [3]. These periodic variations, caused by the gravitational influence of the 
Earth, were presented in a standard form 

  

(0.0.0.0; ) ( ; ) (0.0.0.0; ) ( ; )
2 2 2 22 22 22

1 1
(0.0.0.0; ) ( ; ) (0.0.0.0; ) ( ; )

22 22 22 21 21 21
1 1

(0.0.0.0; ) ( ; )
21 21 21

1

cos ; cos ;

sin ; sin ;

cos ,

K K K KK K

K K K KK K

K KK

J J J C C C

S S S C C C

S S S

ν ν
ν ν

ν ν
ν ν

ν ν
ν ν

ν
ν

ν

θ θ

θ θ

θ

 (6) 



The Physical Librations of the Moon Caused by its Tidal Deformations

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019. № 2 7 

where ( ; )
2 ,KJ ν  ( ; )

22 ,KC ν  …, ( ; )
21

KS ν  are dimensionless amplitudes of the variation 
of the second harmonic coefficients of the selenopotential; 1 2M Sv l v lνθ  

3 4v F v D   is linear combination of the four well-known arguments of the 
theory of the orbital motion of the Moon with integer coefficients. These 
arguments are linear functions of time and correspond to constant frequencies 

, ,M S Fn n n  and Dn  [5, 6]. In series (6), the constant components of the tidal 
variations of the selenopotential coefficients are separated, due to the resonant 
nature of the movement (0.0.0.0; )

2 ,KJ  (0.0.0.0; )
22 ,KC  …, (0.0.0.0; )

21 .KS  

The numerical values of the amplitudes of variations (6) ( ; )
2 ,KJ ν  ( ; )

22 ,KC ν  …, 
( ; )
21

KS ν  (up to 1110  rad) are determined in Ref. [3] (the number of trigonometric 
terms are shown in parentheses): for coefficients 2J  (35); 22C (31); 22S  (32);  

21C (26); 21S  (25). The maximum values of these variations are: for variations  

2J  ( 81.545 10  with a period of 27.555 days); 22C  ( 80.722 10  with a period  
of 27.555 days); 22S ( 81.039 10  with a period of 27.555 days); 21C ( 82.221 10  
with a period of 27.212 days); 21S ( 80.123 10  with a period of 2190.4 days).  
In the present work, variations (6) are considered as given functions of time. The 
goal is to identify dynamic effects in the rotational motion of the Moon caused 
by these tidal variations (6). The equations of motion in Andoyer canonical 
variables (and their modifications) are used in the form, obtained in [2], for this 
purpose. 

The equations of motion of the Liouville problem in Andoyer variables. 
We’ll consider the Moon as a weakly deformable body, experiencing defor-
mation due to its own rotation and under the influence of the gravitational 
attraction of the Earth. In other words, we will consider the Moon as a free body, 
but with a changeable form and with a time-varying internal structure. 

Let’s assume that the particles of the body during its movement either 
slightly deviate from their original positions, or shift in a predetermined manner 
in time with a small velocity. It can also be assumed that the body has an internal 
solid shell, with which some Cartesian coordinate system C  (body axis) is 
associated, and an external deformable shell. Let Cxyz  be the Cartesian 
coordinate system with the origin at the center of mass of the Moon, 
maintaining a constant orientation in space. The Andoyer variables will be 
introduced, which are related to the vector of the angular momentum of the 
rotational motion of the Moon G  [1, 2] 

 ,G  ,  ,  ,l  ,g  .h  (7) 
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Here for brevity we will not give a detailed description of these variables, but 
only note that these variables determine the magnitude and orientation of the 
vector of the angular momentum of the body (Moon) G  in two coordinate 
systems: 1) in the basic ecliptic coordinate system ;Cxyz  2) in the intermediate 
coordinate system 1 2 3,CG G G  associated with the vector G  and in the axes 
associated with the heavenly body .C  

In particular, the Andoyer variables ,  ,l  g  are Euler angles that determine 
the orientation of the axes of inertia of the body in an intermediate coordinate 
system 1 2 3,CG G G  axes of which retain their orientation in space (for an isolated 
celestial body). 

Let’s introduce the Andoyer variables ,L  ,G  ,H  where L  is projection of 
the G  vector on the polar axis of the body ;C  H  is projection of the G  vector 
on the axis ;Cz  G  is the magnitude of the vector .G  It is obvious, that 

   cos ; ; cos .L G G H GG  (8) 

The variables (8) and ,l  ,g  h  are canonical, the equations of rotational 
motion of the considered weakly deformable body in these variables have a 
canonical form [1, 2]: 

 
,dl K
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;dL K
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 (9) 
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Here, by the condition of the problem, the coefficients ,a  ,b  …, f  are known 
functions of time and are expressed in terms of axial and centrifugal moments 
of inertia by simple formulas 
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The Hamiltonian of (10), (11) can be represented as the sum of the zero-
order 0( )K  and perturbed 0( )K  Hamiltonians. Zero-order Hamiltonian is 
defined as  

 2 2 2
0

0 0 0

1 1 1 1sin cos ,
2

K G
A B C

 (12) 

or 

 2 2 2 20
0 0 0

1 1 1 1 ,
2

K G G L L
A B C

 (13) 

where 0,A  0,B  0C  are unperturbed values of axial moments of inertia (for 
example, corresponding to the undeformed state of the Moon). 

The Hamiltonian 0K  corresponds to the undisturbed rotation of a solid 
axisymmetric body (or close in its dynamic structure to axisymmetric). In this 
case, the undisturbed rotational motion of the considered body is described by 
simple formulas 

 0L L 0( );  0;ll n t l  0,gg n t g  (14) 

where 0z  is the initial value of the corresponding variable ( , , , ),z L l g  and 
the unperturbed frequencies of the Euler body motion are constant and are 
determined by the formulas 

 0
0 0

1 1 ;ln L
A C

 0
0 0 0

1 1 1 1 1 .
2 2gn G

C A B
 (15) 

In the case of the Moon, we’ll take its axial rotation around the polar axis 
of inertia (the axis of the greatest moment of inertia )C  as the undisturbed 
rotational motion. For this unperturbed motion 0 0L  and, accordingly, the 
frequency 0.ln  

First-order perturbations in the rotation of the Moon due to its tidal 
deformations in Andoyer variables. The influence of perturbing factors on the 
rotation of a deformable body is characterized by a small parameter , which is 
proportional to the magnitude of the variation of the second harmonic 
coefficients of the selenopotential, i.e., for the Moon 810 .  Therefore, it is 
advisable to use method of the small parameter to solve the considered problem. 

Keeping the terms of the first order of smallness, for the perturbing 
Hamiltonian (the terms of the first order of smallness )  on the basis of formulas 
(10), (11), the expression will be obtained 
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The selected perturbing Hamiltonian allows to study the dynamic effects 
in the rotation of a celestial body, caused by cyclical variations or secular 
changes of the main second harmonic coefficients of the selenopotential 2,J  

22,C  21,C  21S  and 22.S  Thus, first-order disturbances of variables ,l g  
and L  (7), (8) are determined by simple quadratures 

 1 ;Kl dt
L

 1 ;KL dt
l

 1 .Kg dt
G

 (17) 

The partial derivatives in integrands (17) are calculated for the unperturbed 
values of the variables (14), (15) and are known functions of time. For brevity, 
let’s omit the expressions for the indicated partial derivatives and present the 
results of integration by formulas (17) 
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Considering the differential ratio sin ,L  we obtain another 
expression for the variation of the variable :  

 (22)

0

2 cos .S
J ν ν

νν
θ  (20) 

This is a complete solution for first-order perturbations in the indicated 
variables. There will be additional terms in the projections of the angular 
velocity due to variations in the geometry of the masses of the Moon. There is no 
data on the variations of its relative kinetic moment (or its components along 
the axes of inertia of the Moon P, Q and R) for the Moon yet, and the 
corresponding perturbations in the rotation of the Moon are not considered in 
the article. 

The variations of auxiliary coefficients of the geopotential were used in 
formulas (18)–(20). They are related to the axes of coordinates ,O  
associated with the Moon and directed along the geocentric radius vector of the 
center of mass of the Moon (axis ),O  along the polar axis of inertia O  and 
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tangential to the orbit, and in the opposite direction with respect to the direction 
of motion .O  However, in selenodesy, the basic selenographic coordinate 
system K K KC  is used as the main coordinate system associated with the 
Moon, the axes of which, in a different order, correspond to the above 
directions: the axis KC  is directed to the Earth ( );KC C  the axis KC  is 
the polar axis of inertia (axis );KC C  the axis KC  coincides with the axis 
C  ( )KC C  and complements the coordinate system to the right. 

Formally, let’s rename the task parameters. For the coefficients of the second 
harmonic of the selenopotential, defined in the working coordinate system 

,O  let’s retain the usual notation, i.e., 2 22 22 21 21, , , , ,J C S C S  and for the 
same coefficients defined in the main coordinate system of the Moon 

,K K KC  we use the new notation (with the “K” index) 2 22, ,K KJ C  22 ,KS

21 21, .K KC S  It is the last coefficients obtained from satellite and laser observations. 
Thus, according to the latest observational data for the “Selenium” project, for 
the average values of these coefficients (for their constant components) their 
values were determined with high accuracy [5]. The relations between the 
selenopotential coefficients determined with respect to two coordinate systems 
are obtained above (1), (2). 

As a result, the formulas for the librations of the Moon in variables are 
written as follows: 

 ( ; ) ( ; )
21 21

0 0
cos cos ;K KTl S S

T
νν ν

ν ν
νν ν

 (21) 

 ( ; ) ( ; )
2 2

0 0

2 2sin sin ;
3 3

K KTg J J
J J T

νν ν
ν ν

νν ν
 (22) 

 ( ; ) ( ; )
21 21

0 0

1 1cos cos .K KTC C
J J T

νν ν
ν ν

νν ν
 (23) 

Here, 1 2 3 4 ;M S F Dv n v n v n v nν  2 / .Tν ν  Formulas (21)–(23) are 
complemented by similar trigonometric representations for projections of 
angular velocity. 

The work does not consider the effect of tidal variations in the 
selenopotential coefficients on the librations of the Moon. Due to the resonant 
nature of the rotation of the Moon, these perturbing factors are comparable in 
magnitude with those studied in this paper. In future work, they will be studied 
separately. For further research, the theory of physical libration of the Moon 
with a liquid core is of interest [7–9]. 
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Variations of the projections of the vector of angular velocity on the axis 
of inertia of the body. Let’s consider the general formulas connecting the 
projections of the angular velocity of rotation ( , , )p q r  and the projection of 
the angular momentum vector G  of rotational motion, 
 sin sin ;G G l  sin cos ;G G l  cosG G  (24) 

on the main (average or unperturbed) inertia axis of the deformable Moon [1] 

 ;p a G P f G Q e G R  

 ;q f G P b G Q d G R  (25) 

 ,r e G P d G Q c G R  

where coefficients ,a  ,b …, f  are known functions of time (11). In the general 
case, the equations include the projections of the kinetic moment of the Moon 
mantle particles relative displacements (due to tidal deformations as a result of the 
attraction of the Earth) onto the average axes of inertia: Р, Q  and .R  There are 
currently no data on these characteristics of the variable Moon, therefore we take 
them to be equal to zero. 

Keeping only the terms of the first order of smallness with respect to the 
time variations of the components of the inertia tensor of the Moon (5) and the 
coefficients of the selenopotential (6), after the necessary transformations of 
equalities (25), the approximate formulas are obtained 

cos sin sin cos sin sin sin cos cos ;G A F Ep l l l l l
A A B C

 (26) 

cos cos sin sin sin cos sin sin cos ;G B F Dq l l l l l
B B A C

 (27) 

 sin cos sin sin sin cos .G C E Dr l l
C C A B

 (28) 

Here, the factors with variations of the Andoyer variables and variations of the 
components of the inertia tensor depend on the unperturbed values of the 
variables / 2  and 0,l  therefore formulas (26)–(28) can be written in a 
simplified form 

 ;G Fp l
A B

 ;G Bq
B B

 ,G Dr
C B

 (29) 

or taking into account relations (5) in the accepted approximation 
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where variation p  corresponds to the projection of the angular velocity on the 
equatorial axis of inertia of the Moon ,C  the variation r  corresponds to the 
projection of the angular velocity onto the other equatorial axis ,C  variation 

q  corresponds to variation in the axial rotation of the Moon and the duration 
of this rotation (LOD compared with similar characteristics for the Moon). 
Selenopotential coefficients differ from conventional (classical) notation. Again 
let’s perform the predominance of the axes of inertia according to the rule given 
earlier, and introduce the classical notation of the projections of the angular 
velocity 

 ;Kp p  ;Kq r  ,Kr q  (31) 

also in accordance with the redesignation of the axes of inertia of the Moon used 
above. Then finally  
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 (32) 

The results of the analysis of the physical librations of the Moon caused by 
its tidal deformations for projections of angular velocity (32) and for variations 
of the three Andoyer variables (21)–(23) are given in Tables 1–3. It also shows 
the amplitudes ( ; )

2 ,KJ ν  ( ; )
21 ,KC ν  ( ; )

21 ,KS ν
 the periods Tν  and arguments ν  for the 

tidal variations of the second harmonic coefficients of the selenopotential. Table 
1 shows the amplitudes, periods and arguments of the tidal variations of the 
lunar day duration, determined by analogy with the variations of the Earth day 
duration  

 Moon .K
F

F

rLOD T
n

 

The amplitudes of the variations in the table 3 determined in milliseconds of 
time (ms). 
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Table 1 
Forced librations of the Moon due to tidal deformations of the Moon,  

amplitudes and periods of cyclic variations of the projection  
of the angular velocity and the Andoyer variable 

1  2  3  4  Tν  ( )
21 ,C ν  810  ,pν  31" 10  ,ν  31" 10  

0 0 1 0 27.212 –2.2209 11.6421 –11.6421 
1 0 1 0 13.691 –0.3028 1.5873 –3.1549 
1 0 –1 0 2190.35 0.0613 –0.3213 –0.0040 
1 0 –1 –2 14.666 0.0577 –0.3025 –0.0013 
0 0 1 2 9.572 –0.0488 0.2558 –0.2538 
2 0 1 0 9.146 –0.0355 0.1861 –0.5537 
0 0 1 –2 32.281 0.0329 –0.1725 0.1738 
1 0 1 2 7.104 –0.0106 0.0556 –0.1100 
1 0 1 –2 188.201 –0.0095 0.0498 –0.0994 
2 0 –1 0 27.906 0.0052 –0.0273 0.0266 
0 0 3 0 9.071 –0.0037 0.0194 –0.0582 
0 1 –1 –2 9.829 0.0032 –0.0168 –0.0154 
3 0 1 0 6.867 –0.0032 0.0168 –0.0665 
2 0 1 –2 24.036 0.0020 –0.0105 0.0313 
2 0 1 2 5.648 –0.0014 0.0073 –0.0218 

Table 2 
Tidal variations of the axial rotation of the Moon q  (mas) and variations  

of the Andoye angular variable g (mas) 

ml  sl  F D Tν  2J  3, 1" 10Kq  3, 1" 10g  
0 0 0 0 0 9.446 33.0111 0.0000 
1 0 0 0 27.555 1.5453 5.4004 7.9999 
1 0 0 –2 31.812 0.2954 1.0323 1.5417 
0 0 0 2 14.765 0.2584 0.9030 –0.0108 
0 0 0 2 13.606 0.1933 0.6755 –0.0081 
2 0 0 0 13.777 0.1267 0.4428 1.3118 
1 0 0 2 9.614 0.041 0.1433 0.2105 
1 0 2 0 9.108 0.037 0.1293 0.5795 
2 0 0 –2 205.892 0.0137 0.0479 0.1424 
3 0 0 0 9.185 0.0102 0.0356 0.1584 
1 –1 0 0 29.803 0.0095 0.0332 0.0455 
0 0 2 –2 173.31 –0.0094 –0.0329 –0.0989 
1 0 0 –4 10.085 0.008 0.0280 0.0421 
1 1 0 0 25.622 –0.0079 –0.0276 –0.0440 
0 0 2 2 7.081 0.0059 0.0206 0.0616 
2 0 2 0 6.846 0.0049 0.0171 0.1021 
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Table 3 
Tidal variations of the axial rotation of the Moon Kr  (in milliseconds of arc)  

and variations of the Andoyer angular variable l  (in milliseconds of arc) 

ml  sl  F D Tν  21S  3, 1" 10Kq  2K  3, 1" 10l  
1 0 –1 0 2190.35 –0.1227 0.6432 –0.01242 0.0080 
1 0 1 0 13.691 0.1204 –0.6311 1.987576 1.2544 
1 0 1 –2 188.201 –0.0283 0.1484 1.995582 –0.2960 
2 0 1 0 9.146 0.0205 –0.1075 2.975153 0.3197 
0 0 1 2 9.572 0.0188 –0.0986 0.991995 0.0978 
0 0 1 –2 32.281 –0.0141 0.0739 1.008005 –0.0745 
0 0 1 0 27.212 –0.0105 0.0550 1 –0.0550 
2 0 –1 0 27.906 –0.0076 0.0398 0.975153 –0.0388 
1 0 1 2 7.104 0.0058 –0.0304 1.979571 0.0602 
2 0 1 –2 24.036 –0.0042 0.0220 2.983158 –0.0657 
0 0 3 0 9.071 –0.0037 0.0194 3 –0.0582 
3 0 1 0 6.867 0.0032 –0.0168 3.962729 0.0665 
0 1 1 0 25.325 –0.0027 0.0142 1.074501 –0.0152 
1 –1 1 0 13.197 –0.0016 0.0084 1.913075 –0.0160 
2 0 1 2 5.648 0.0014 –0.0073 2.967147 0.0218 
1 1 2 1 6.838 –0.001 0.0052 3.058075 –0.0160 

 
Conclusion. Tidal deformations caused by the gravitational influence of the 

Earth lead to sensitive physical librations of the Moon with amplitudes of the 
order of a few milliseconds of arc. Variations in the duration of the day due to 
tidal deformations of the Moon are also significant and can reach tens of 
milliseconds. The obtained results should be taken into account when 
implementing lunar projects in the near future, in particular in the Japanese 
ILOM project for installing a telescope on the lunar surface in order to determine 
its orientation accurately [10]. High-precision measurements of the orientation of 
the Moon and its temporal changes open up new possibilities for reseaching in the 
internal structure and internal dynamics of the Moon, its deformations. 

Translated by E. Ovsyannikova 
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