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Abstract Keywords 
This paper deals with the Simple MEC (SMEC) algo-
rithm which belongs to a class of MEC algorithms. 
The algorithm was selected for investigation due to 
the following reasons: nowadays this algorithm and 
its modifications are successfully used for solving 
various optimization problems; the algorithm is high-
ly suitable for parallel computations, especially for 
loosely coupled systems; the algorithm is not suffi-
ciently studied — there are relatively few modifica-
tions of SMEC (while, for instance, tens of various 
modifications are known for particle swarm optimiza-
tion). Authors proposed an adaptive multi-memetic 
modification of SMEC algorithm, which includes a 
stage of landscape analysis for composing a set of 
basic adaptation strategies; software implementation 
of the algorithm is also presented. Performance inves-
tigation was carried out with a use of multi-dimen-
sional benchmark functions of different classes. It was 
demonstrated that the concept of multi-population 
along with the incorporated landscape analysis pro-
cedure allows making a rough static adaptation of the 
algorithm to the objective function at the very begin-
ning of evolution process at the cost of small compu-
tational expenses. Utilization of memes, in turn, helps 
the algorithm to correct possible errors of static adap-
tation during the evolution due to a closer investiga-
tion of search sub-domains 
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Introduction. When solving real-world global optimization problems, one often 
faces a high-dimensional objective function with a non-trivial landscape, which 
is computationally expensive. In order to cope with such problems, many 
population-based algorithms were proposed [1, 2]. One of the main advantages 
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of this class of algorithms, apart from their simplicity of implementation and 
diversity, is a high probability of localizing so called sub-optimal solutions, in 
other words, solutions that are close to the global optimum. In real-world 
optimization problems, such solutions are often sufficient. 

In the meantime, it was demonstrated [2−4] that often a single method is not 
enough to obtain a high-quality solution. It is required to hybridize a method with 
other optimization techniques. One of the promising approaches in this field is so 
called memetic algorithms (MA). These methods are population meta-heuristic 
optimization algorithms based on neo-Darwinian evolution and a concept of 
meme proposed by R. Dawkins in 1976 [5]. In the context of MA, a meme can be 
considered as any local optimization method applied to a current solution during 
the evolution process. Memetic algorithms represent a combination of 
population-based global optimization technique and local search procedures. 

Recent results of the works [4, 6, 7] demonstrate that if a memetic algorithm 
receives no prior knowledge on the problem hand, it can produce a solution not 
only equal to the one obtained using an ordinary population algorithm but even 
worse. In addition, there are relatively few theoretical papers that would suggest 
any particular MA configuration for black-box optimization problems. As a 
result, many scientists tend to utilize adaptive algorithms, which are capable of 
selecting the most suitable local optimization techniques for a particular search 
sub-domain during the evolution process. 

Nowadays, many scientists actively work on the alternative approach, 
namely, an exploratory landscape analysis (LA) of an objective function [8, 9]. 
Instead of a dynamic adaptation of an algorithm during the optimization 
process, it is proposed to extract some information on the objective function’s 
landscape and topology at the cost of additional evaluations (1…10 % of total 
computational budget). Landscape analysis methods identify either search sub-
domains with rugged or smooth topology or sub-domains where values of the 
objective function are almost identical. In the works [10−12] several universal 
LA methods were proposed, including Cell Mapping and Information Content. 

A class of Mind Evolutionary Computation (MEC) algorithms is consid-
ered [13−15] in this work. These algorithms belong to a family of methods in-
spired by a human society and simulate some aspects of a human behavior. An 
individual s is considered as an intelligent agent which operates in a group S 
made of analogous individuals. During the evolution process each individual is 
affected by other individuals within a group. This simulates the following logic. 
In order to achieve a high position within its group, an individual has to learn 
from the most successful individuals in this group. Groups themselves should 
follow the same principle to stay alive in the intergroup competition.  
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In this work, the Simple MEC algorithm is considered. It belongs to a class 
of MEC algorithms and was selected for investigation due to the following 
reasons: nowadays this algorithm and its modifications are successfully used for 
solving various optimization problems [6, 15]; the algorithm is highly suitable 
for parallel computations, especially for loosely coupled systems [7]; the 
algorithm is not sufficiently studied — there are relatively few modifications of 
SMEC (while, for instance, tens of various modifications are known for particle 
swarm optimization [2]). 

We propose an adaptive multi-memetic modification of SMEC algorithm, 
which includes a stage of landscape analysis for composing a set of basic 
adaptation strategies; software implementation of the algorithm is also presented. 
Performance investigation was carried out with a use of multi-dimensional 
benchmark functions of different classes. 

Problem statement and SMEC algorithm. A global deterministic uncon-
strained minimization problem is considered in this work 

 * *min ( ) ,
nX R

Ф X Ф X Ф  (1) 

where Ф X  is the scalar objective function; * *Ф X Ф  is its required 

minimal value; 1 2, , , nX x x x is n-dimensional vector of variables; nR  is  
n-dimensional arithmetical space. A domain 0D  is defined as follows: 

 min max0 | ,  1 :iD X x x x i n  (2) 

and used for generating the initial population of solutions. 
A population in the SMEC algorithm consists of leading groups 

1 2 | |, , , b
b b b b

SS S S S  and lagging groups 1 2 | |, , , ;w
w w w w

SS S S S  the number 

of individuals within each group is set to be the same and equals .S  The 
SMEC algorithm is based on the following procedures: initialization, similar-
taxis and dissimilation. 

The initialization stage creates groups , b wS S  and put them in the search 
domain. We illustrate the initialization stage by an example of the group .iS  

1. Generate a random vector ,1iX  whose components are distributed  
uniformly within the corresponding search subdomain. Identify this vector 
with the individual ,1is  of the group .iS  

2. Determine the initial coordinates of the rest of the individuals in the 
group using the formula 
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 , ,1 ,  [2 :| |],i j i nX X N j S  (3) 

where    nN  is n-dimensional vector of independent random real numbers, 
distributed normally with math expectation and standard deviation equaling 0 
and  respectively. 

The similar-taxis stage implements a local search inside every group 
, b wS S  and can be described as follows. 

1.  Determine the current best individual ,  ,bi js [1:| |],bj S  of the group .iS  

2. Determine new coordinates of the rest individuals ,  ,i js [1 :| |]j S , 

bj j  in this group using formula (3). 
3. Calculate the objective function’s values for all individuals in the group 

,  , ( ),i j i jФ Ф X  [1 :| |].j S  Here vector , i jX  corresponds to the individual ,  .i js   

4. Determine a new winner of the group ,  ,
bi ks  [1:| |],bk S  as an individu-

al with the lowest value of the objective function .Ф  
The dissimilation stage implements a global search between all groups and 

uses the following steps. 
1. Determine the best individuals of all groups ., b wS S  

2.  Compare their scores and rank them. If a score of any leading group b
iS  is 

less than a score of any lagging group ,w
jS  then the latter becomes a leading 

group and the leading group becomes a lagging one. If a score of any lagging 
group w

jS  is lower than scores of all leading groups for  consecutive iterations, 
then it’s removed from the population. 

3. Replace each removed group with a new one using the initialization 
procedure. 

Similar-taxis and dissimilation stages are repeated iteratively while the best 
obtained value of the objective function ( )Ф X  changes. When the best obtained 
value stops changing, the winner of the best group is selected as a solution to the 
optimization problem (1). 

Modified Multi-Population SMEC. An extension performance investiga-
tion of the SMEC algorithm was carried out by the authors in the work [16]  
in order to determine the influence of the free parameters’ values on  
the efficiency of the algorithm. The following parameters were considered: ,  
the standard deviation, utilized when generating new individuals in groups; ,  
the removing frequency of lagging groups; ,  the ratio between numbers  
of leading and lagging groups in the population. 
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Results of that work demonstrated a strong dependency of the algorithm’s 
efficiency on the values of those parameters and also revealed that optimal 
values of those parameters differ for various objective functions .Ф  

These conclusions allowed formulating a multi-population modification  
of SMEC algorithm. Instead of a single population, a set of sub-populations 

1 2, , , KK K K K  is considered. 
Evolution inside each sub-population is governed by the individual values of 

the free parameters described above. Those values can be set based on the 
distinct features of the objective function’s topology if they are known a priori or 
determined with a use of some heuristics [16]. 

In the modified algorithm, the required optimal value *Ф  of the objective 
function is determined as the minimum of the values obtained by every  
sub-population independently 

 * *min ,  1 :| | .l
l

Ф Ф l K  (4) 

The modified initialization stage of sub-population lK  is executed using an 
individual value .l  As a result, each sub-population has its own level of search 
intensification and diversification and provides a balance for the whole multi-
population. Parameter l  is also used at the similar-taxis stage within every sub-
population .lK  

The ratio between numbers of leading and lagging groups in every sub-
population is determined by the value .l  An experimental result shows [16], 
that a small number of lagging groups affects adversely the diversification 
properties and can be useful only when the computational process approaches 
stagnation. 

The dissimilation stage in the modified algorithm is executed with the use of 
an individual value .l  Based on the experiments [16] it was determined that 
the higher the removing frequency is (the lower value of ),l  the lower are 
diversification properties of the algorithm because lagging groups don’t have 
enough time to explore their search sub-domains. 

Landscape analysis procedure. In this work, we present a new method for 
landscape analysis of the objective function for a case when no initial 
information is available with any limitation on a problem’s dimension. This 
method allows putting a function into one of six groups, each group 
corresponds to a static adaptation strategy which is utilized on the further stages. 
Each proposed group corresponds to a certain type objective function’s 
topology. This classification was proposed based on the experimental studies 
[16] as the new algorithm is designed for particularly for parallel loosely coupled 
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systems. It allows considering different parallelization procedures in terms of 
load balancing which will be studied in the future works. The proposed LA 
procedure can be described as follows. 

1.  Generate N  quasi-random n-dimensional vectors with domain 0.D  Here 
N  is a total number of all groups in a multi-population (a free parameter of the 
algorithm). In this work LP  sequence was used to generate quasi-random  
numbers since it provides a high-quality coverage of a domain [17]. 

2. For every ,  [1 :  ],rX r N  calculate the corresponding values of the objec-
tive function rФ  and sort those vectors in ascending order of values 

,   [1 :  ].rФ r N  
3. Equally divide a set of vectors 1 2, , , NX X X  into | |K  groups in ac-

cordance with a given number of sub-populations | |K  (one freer parameter). 

4. For every group ,lK  1 :| | ,l K  calculate a value of its diameter ld — 
a maximum Euclidian distance between any two individuals within this group 
[18]. 

5. Build a linear approximation for the dependency of diameter d on group 
number l using the least squares method [18]. 

6. Calculate an estimation of the size of domain 0D  using the formula 

 2max min .Dd n x x  (5) 

Put the objective function Ф  into one of the six categories (Table 1) based 
on the calculated parameters.  

Table 1 

Classification of objective functions based on the LA results 

( )jd l  increases 
( )jd l  neither  

increases nor decreases 
( )jd l  decreases 

1 2/Dd d  
Nested sub-domains with 
the dense first domain  
(category I) 

Non-intersected  
domains of the same 
size (category III) 

Distributed domains  
with potential minima  
(category V) 

1 2/Dd d  
Nested sub-domains with 
the sparse first domain 
(category II) 

Intersected domains  
of the same size (cate-
gory IV) 

Highly distributed  
domains with potential 
minima (category VI) 
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There are three possible cases for the approximated dependency ( ):d l  d  can 
be an increasing function of ;l  d  can decrease as l  grows; ( )d l  can be neither 
decreasing nor increasing. Within the scope of this work it is assumed that the 
latter scenario takes place when a slope angle of the approximated line is less  
than 5 .  

The ratio between Dd  and 1d  helps to estimate the density of the first 
group 1K  with respect to the original domain 0.D  In other words, we can un-
derstand whether vectors X  with the least values of the function Ф  are sparse-
ly or densely distributed. We consider two possible cases: 

 
1

2,Dd
d

 
1

2.Dd
d

 

Here the value 2 was obtained from the empirical studies [18]. 
Each of the six categories represents a certain topology of the objective 

function Ф  and subsequently the rules for determining numerical values of the 
SMEC algorithm’s free parameters, specified in the previous sections. 

For objective functions that belong to the categories I and II, there is a 
high probability that the required global minimum is located within a domain 
defined by group 1.K  In this case, values of the parameters ,   and  are 
selected to provide a high level of intensification properties for the first groups 
and increase diversification properties for groups with high index numbers. 

For objective functions that belong to the categories III and IV, values of 
the parameters ,   and  are selected randomly from given intervals.  

Finally, objective functions that belong to the categories V and VI can be 
characterized with a large search sub-domain that can include the desired 
minimum. In this case, the values of the parameters are selected to increase the 
diversification properties of the first groups. 

Figure 1 displays a few examples of the proposed landscape analysis proce-
dure for various two-dimensional benchmark functions, including the tradition-
al functions of Rastrigin, Griewank and Styblinski — Tang [19] as well as the 
composition functions from CEC 2014 [20]. 

Multi-memetic modification. Memetic algorithms appeared to be 
successful for solving optimization problems in various fields. However, just like 
for any other heuristic algorithm, the adjustment of the free parameters is 
required for their efficient performance. For instance, it is crucial to choose the 
most suitable meme for a problem in hand. It was demonstrated in Ref. [4] that 
this choice affects MA’s efficiency greatly. 
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Fig. 1. Results of the landscape analysis procedure for a few benchmark functions: 
a Zakharov function (category I); b Griewank function (category II); c Styblinski — Tang func-

tion (category IV); d composition function 2 from CEC’14 (category II);  
e composition function 4 from CEC’14 (category I); f composition function 5 from CEC’14 

(category IV) 
 
Nowadays, there are many papers, which propose different schemes for  

hybridization of meta-heuristic methods with local search procedures [4, 21, 22]. 
Often these algorithms utilize complicated heuristic local search procedures  
designed specifically for certain problems. Despite high efficiency their applica-
tions are limited because in many real-world problems scientists do not have 
any prior information on what meme they should use for a particular problem. 
Multi-memetic algorithms were proposed to overcome these difficulties [23]. 

A distinct feature of this algorithm is a use of several memes during the 
evolution. In this class of algorithms, a decision on which meme to use for one 
or another individual in a population is usually made dynamically. Such a class 
of MA provides a competition between different specialized local search 
methods. As a result, the algorithm preserves high efficiency despite lacking any 
initial information about a problem under investigation. 

When designing a multi-memetic algorithm, one should carefully select a 
practical strategy for applying one meme or another from a set of available 
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memes      ( ,  [1 :| |]).jM m j M  The choice can be made based on the character-
istics of memes or/and search sub-domains [24, 25].  

In this work three ( 3M ) local search methods were utilized, namely, 
Nelder — Mead method [26], Solis — Wets method [27], and Monte-Carlo 
method [1]. Only zero-order methods were used to deal with problems where 
the objective function’s derivative is not available explicitly and its approxima-
tion is computationally expensive. While the Nelder — Mead method is purely 
local, Solis — Wets and Monte-Carlo methods can solve both local and global 
optimization tasks depending on their parameters. As a hyper-heuristic for 
selecting a meme the following rule was utilized. 

1.  Within sub-population lK  in every group select the best individual ,  ,  .
bl i ks  

2. Launch all available memes from their current positions. An iteration 
number for each meme is limited with .P  

3. Select the most efficient meme for every group based on the obtained 
values of ( ).Ф X  

4. Use the best meme bm  to refine all individuals’ positions in a group at 
the similar-taxis stage. 

To save computational budget, memes are utilized with an individual 
frequency for each group / 2.l  

The algorithm proposed in this paper with a use of multi-population 
concept and multi-memetic approach was named Multi-Memetic Modified 
MEC (M3MEC). The concept of multi-population along with the incorporated 
landscape analysis procedure allows making a rough static adaptation of the 
algorithm to the objective function at the very beginning of evolution process at 
the cost of small computational expenses. Utilization of memes, in turn, helps 
the algorithm to correct possible errors of static adaptation during the evolution 
due to a closer investigation of search sub-domains. 

Performance investigation. The M3MEC algorithm was implemented by 
authors in Wolfram Mathematica. Software implementation has a modular 
structure, which helps to modify algorithms easily and extend them with 
additional assisting methods. 

A study was carried out in this work to compare the efficiency of the pro-
posed algorithms with a landscape analysis procedure and SMEC with optimal 
values of the free parameters from the work [16]. All numeric experiments 
were carried out using the multi-start method with 50 launches. The best  
obtained value of an objective function *Ф  as well as its average value Ф  based 
on the results of all launches were utilized as the performance indices for  
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comparison two algorithms and their software implementations along with the 
average iteration number .  

Benchmark functions. Multi-dimensional benchmark optimization func-
tions are considered in this paper [19]. An original domain for generating the 
initial population equals 
 0 | 10 10,  1 : .iD X x i n  (6) 

During the experiments the following values of free parameters were used 
for the SMEC algorithm: standard deviation 0.1;  total number of groups 

100;  number of individuals in each group 50;S  ratio between numbers 
of leading and lagging groups number of groups 1;  removing frequency for 
lagging groups 20.  In order to provide approximately the same level of 
computational expenses per iteration the following settings were used  
for M3MEC: number of sub-populations 5;K  number of groups in every 
sub-population 16;l  number of individuals in each group within the  
sub-population 30.lS  

The number of stagnation iterations stop 50  was used as a termination 
criterion for the algorithms. Tolerance used for identifying stagnation was 
equal to 5.10  

Experimental results. Obtained results (Table 2) demonstrate superiority 
of the proposed algorithm over Simple Mind Evolutionary Computation algo-
rithm.  

Table 2 

Numerical experiment results 

Function 
SMEC M3MEC 

8n  16n  8n  16n  

Ackley 
function 

1Ф  = 3.9E + 0 
*
1Ф  = 3.3E − 1 

1Ф  = 4.3E + 0 
*
1Ф  = 8.7E − 1 

1Ф  = 1.01E − 3 
*
1Ф  = 2.34E − 6 

1Ф  = 8.31E − 2 
*
1Ф  = 2.44E − 5 

Dixon 
function 

2Ф  = 6.7E − 1 
*
2Ф  = 3.0E − 1 

2Ф  = 2.3E + 0 
*
2Ф  = 1.9E + 0 

2Ф  = 0.47E + 0 
*
2Ф  = 2.09E − 6 

2Ф  = 1.12E − 1 
*
2Ф  = 3.16E − 4 

Griewank 
function 

3Ф  =3.7E − 2 
*
3Ф  =2.9E − 2 

3Ф  = 4.2E − 2 
*
3Ф  = 2.1E − 2 

3Ф  = 6.95E − 2 
*
3Ф  = 1.97E − 2 

3Ф  = 6.47E − 2 
*
3Ф  = 1.85E − 5 

Levy 
function 

4Ф  = 2.6E + 0 
*
4Ф  = 0.9E + 0 

4Ф  = 1.1E + 1 
*
4Ф  = 3.9E + 0 

4Ф  = 6.28E − 5 
*
4Ф =1.47E − 7 

4Ф  = 4.19E − 1 
*
4Ф  = 2.92E − 6 

Powell 
function 

5Ф  = 1.2E − 1 
*
5Ф  = 1.1E − 1 

5Ф  = 2.8E + 0 
*
5Ф  = 1.5E + 0 

5Ф  = 9.76E − 4 
*
5Ф  = 3.92E − 5 

5Ф  = 1.03E − 1 
*
5Ф  = 4.49E − 4 
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End of Table 2

Function 
SMEC M3MEC 

8n 16n 8n  n = 16 
Rastrigin 
function 

6Ф  = 6.3E + 1 
*
6Ф  = 4.0E + 1 

6Ф  = 2.4E + 2 
*
6Ф  = 1.4E + 2 

6Ф  = 1.29E+0 
*
6Ф  = 1.33E − 2 

6Ф  = 5.66E + 1 
*
6Ф  = 9.97E + 0 

Rosenbrock 
function 

7Ф  = 6.5E + 0 
*
7Ф  = 2.4E + 0 

7Ф  = 3.2E + 1 
*
7Ф  = 2.5E + 1 

7Ф  = 5.17E − 1 
*
7Ф  = 1.04E− 3. 

7Ф  = 2.21E + 1 
*
7Ф  = 2.64E − 1 

Sphere 
function 

8Ф  = 2.4E − 2 
*
8Ф  = 2.1E − 2 

8Ф  = 1.9E − 1 
*
8Ф  = 1.8E − 1 

8Ф  = 1.71E − 5 
*
8Ф  = 2.94E − 7 

8Ф  = 6.97E − 3 
*
8Ф  = 2.18E−6 

Sum of 
Squares 
function 

9Ф  = 8.0E − 2 
*
9Ф  = 7.3E − 2 

9Ф  = 1.6E + 0 
*
9Ф  = 9.4E − 1 

9Ф  = 3.99E − 5 
*
9Ф  = 2.34E − 7 

9Ф  = 1.08E − 2 
*
9Ф  = 1.51E − 6 

Zakharov 
function 

10Ф  = 4.6E − 2 
*
10Ф  = 3.9E − 2 

10Ф  = 3.9E − 1 
*
10Ф  = 3.1E − 1 

10Ф  = 4.68E − 4 
*
10Ф  = 9.03E − 7 

10Ф  = 6.91E − 1 
*
10Ф  = 2.72E − 4 

 
For the majority of the benchmark functions the results obtained with the 

use of M3MEC are better than ones obtained using SMEC by several orders of 
magnitude both for the average values Ф  and least found values *.Ф  While the 
high accuracy of *Ф  is caused by memes [25], decrease in the average values Ф  
is conditioned upon LA procedure. 

On the other hand, M3MEC algorithm requires more iterations than the 
SMEC algorithm (Fig. 2). However, in terms of the objective function’s 
evaluations this advantage of SMEC is not obvious. It was discovered that sub-
populations that were made of individuals with high values of ( )Ф X  often 
requires more iterations to reach stagnation. This sometimes makes a decent 
number of last iterations unnecessary and can be overcome with a use of more 
advanced termination criteria. 

Conclusion. This paper presents a new two-stage adaptive multi-memetic 
algorithm with the incorporated landscape analysis procedure. The algorithm is 
capable of adapting to various objective functions using both static and dynamic 
adaptation. Static adaptation was implemented with a use of landscape analysis, 
while dynamic adaptation was made possible by utilizing several memes. 

A comparative study of the proposed method with a traditional SMEC 
algorithm was carried out. Obtained results demonstrate the superiority of 
proposed technique over Simple Mind Evolutionary Computation algorithm 
with tuned values of the free parameters. M3MEC provides a high-quality 
solution for multi-dimensional optimization problems but requires more 
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Fig. 2. Iteration number for different benchmark functions: 
a dimension 8;n  b dimension 16n  

 
evaluations of an objective function. This drawback, however, can be overcome 
with a use more advanced termination criteria.  

Further research will be devoted to the investigation of different strategies 
for selecting memes and parallelization schemes for M3MEC. 
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