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Abstract

The compact analytic formula of calculating the feed-
back law (controller matrix) coefficients is developed for
solving the synthesis problem of modal controller
providing desired pole placement by means of the fully
measured state vector in linear dynamic systems with
vector control. This formula represents the generali-
zation of the known Bass — Gura formula, used for
synthesizing modal controllers in systems with scalar
control, to systems with vector control. The obtained
solution is applicable to systems with state-space dimen-
sion divisible by the number of control inputs and the
matrix composed of the linearly independent first block
columns of the Kalman controllability matrix by a num-
ber corresponding to the quantity of the mentioned
multiplicity is reversible. To use the mentioned formula,
i’s not required to additionally transfer the described
systems of the indicated class to special canonical forms.
This formula may be applied to solve both numeric and
analytic problems of modal control in mentioned class,
independently on a specific ratio of state-vector and
control-vector dimensions as well as on existence and
multiplicity of real-value poles and complex-conjugate
pairs of poles in original and desirable spectrums
of state matrix. The examples are considered that prove
the possibility of applying the generalized block-matrix
Bass — Gura formula to calculate modal controllers for
the described class of systems with vector control
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Introduction and problem statement. One of the modern directions of improv-
ing the theory of automatic control is the development of modal synthesis for
linear systems with many inputs and many outputs when controlling both
according to the state [1-3] and the output in the form of analytical [4, 5] and
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numerical [6—11] algorithms. The calculation of modal controllers and observers
with state-vector feedback for linear systems with scalar control can be carried out
based on Bass — Gura formula [12, 13]. The possibility of applying a similar
formula to systems with vector control has not been elaborated.

Let us formulate the modal control problem for dynamic systems with scalar
control.

A fully controlled k-dimensional (ke€N, N is a set of natural numbers) by

the state (x € R¥, RX is a set of vectors of dimension kx1 with real elements)
dynamic system with one (m=1) control input (1eR, R is a set of real
numbers) is specified:

ox = Ax +buy, (1)
where oX(#) is the operator corresponding to the differentiation operation X ()

for the continuous time case and the shift operation x(f+1) for the discrete

time case; A € Rk s the state matrix (R¥* is a set of matrices of dimension

kxk with real elements); beRX is the control vector. The complete
controllability of the system (1) corresponds to the non-singular Kalman
controllability matrix

Q(A.b)=[A’b |Ab|...|A"b [AD ],

Q(A,b)|=0. 2)

It is required to determine the only possible controller vector k! e Rk,
that provides the state matrix of the closed-loop system object-controller

A-bkT witha given spectrum (a set of eigenvalues):
eig(A—bKT)= A" ={Af, 13, ..., Afp, Af}. (3)

Here is the theorem [12, 13], on the basis of which the problem under
consideration can be solved.

Theorem 1. The Bass — Gura formula for a system with scalar control.
Let in the modal control problem described by relations (1)—(3) be composed: the
original characteristic vector (po, p1> ..., pk-1 € R)

pAB)=[po | p1 || o | praa || =—Q71(A, B)ARD

and the symmetric matrix formed from its components

poip2 i per ]

poi i 10
T(A,b)=| & . 100,

pna 1 Lo 10

L jo ] 00

42 ISSN 1812-3368. Bectauk MI'TY um. H.9. baymana. Cep. EctecTBenHble Haykn. 2020. Ne 2



Generalization of Bass — Gura Formula for Linear Dynamic Systems with Vector Control

as well as the desirable characteristic vector (po, pi» ---» pZ—l eR)

P’ =[p3 l pi l l Pk l PZ—l]T’

such that the set of solutions to the equation

‘7»" + P AL+ pi+ o

=0 (4)

with respect to the variable A forms a given spectrum A*. Then the desired vector of
the controller is determined by the Bass — Gura formula [12, 13]

kT =(p"T = pT(A,1))(Q(A, D) T:(A, b)) . (5)

Finding the desirable characteristic polynomial (vector p*). The modal
control problem with one control input has a unique solution; therefore, the

desirable polynomial from (4) with coefficients pg, pi, ..., p;_, is determined

uniquely from the values of the poles in the spectrum A*. The components
po> pis --» Py coincide with the coefficients for the corresponding degrees
) of the polynomial

WE e M pi pi = (=8 ) (A=23).(A =0 ).

The paper considers a generalization of the Bass — Gura formula (5) for a
certain class of dynamic systems with vector control. This generalization is
relevant since currently there are no explicit formulas for calculating controllers
for such systems similar to the Bass — Gura formula (5). Let us formulate the
modal control problem for the indicated class of dynamic systems with vector
control.

A fully controlled n-dimensional (neN) by the state (x € R”) dynamic

system with several (m €N, m >1) control inputs (ue R™) is specified:
ox = Ax+Bu, (6)

where A e R"*" is the state matrix; B € R"*™ is the control matrix. Wherein

k=leN, 7)
m
and the matrix
Q(A,B)=[A’B | A'B|...| AF2B | A*B], |Q(A,B)|#0, (8)
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composed of the first k block columns, i.e., of the first n columns of the
Kalman controllability matrix for a pair of matrices (A, B) is invertible.

It is required to determine the set of controller matrices KeR™*" that
provides the state matrix of the closed-loop system object-controller A—-BK
with a given spectrum

eig(A—BK)=A"={Af, &5, ..., Al s Aoyl (9)

mk

To solve this problem with vector control for block matrices and vectors, by
analogy with the standard transpose operation, denoted by the superscript “T"”,
it is used the block transposition operation, denoted by the superscript “T"”.
As a result of the block transposition operation, square brackets of dimension
mx m move to positions that are symmetrical with respect to the main block
diagonal (in the case of a non-square matrix, this diagonal is arbitrary), and
inside the blocks themselves, the scalar elements do not move.

Let us formulate a theorem on the basis of which the problem under
consideration can be solved.

Theorem 2. Bass — Gura formula for a system with vector control. Let in
the modal control problem described by relations (6)—(9), be composed:

the original block-matrix characteristic vector (Py, Py, ..., Py e R™™)
_ Ip | | T__ o1 k
P(AB)=[P | P |...| Pry | Pt | =—Q7'(A,B)A'B (10)

and the block-symmetric matrix formed from its components

P Py P Ly
P, : : . : Ly : 0113m
T(AB)=| I 1 .- ii S (11)
Py : Ly : : . : 01150m
L Im : Omxm : : : 0mxm : omxm_

where 1,, is the identity matrix of dimension mxm; Oy, is the zero matrix of
dimension mxm, and also the desirable block-matrix characteristic vector

Py, Pf, ..., Pf_ e R™™):
p=[p; e lpr, T 12
O | ¥ || Fk=2 | Yk-1] > (12)
such that the set of solutions to the equation

‘kklm + AP+ AP + P

=0 (13)
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with respect to the variable L forms a given spectrum A*. Then the desired set of
controller matrices by the state K can be described by the generalized Bass —
Gura block-matrix formula

K=(P'T-P7(A,B))(Q(A,B)T:(A,B)) . (14)

Finding the desirable block-matrix characteristic polynomial (block-

matrix vector P*). The modal control problem with several control inputs does
not have a unique solution; therefore, the desirable block-matrix polynomial

from (13) with coefficients Py, P/, ..., P;_, is determined ambiguously from
the values of the poles in the spectrum A*. As its blocks, it suffices to take the

matrix coefficients for the corresponding degrees A of the block-matrix
polynomial

AT, +A P+ AP+ P = (M, —®@,) (AL, —®)...(AL, -®,_,), (15)

where @, ®y, ...,P;; €C"*™ are such complex matrices of dimension
m xm, that their combined spectrum coincides with the given spectrum, i.e.,
eig @ Ueig®; U...Ueig®i_; = A", and the blocks Pj, P, ..., P;_, are
obtained by real matrices. This option of assigning matrix coefficients
Py, Pf, ..., P{_ e R™*™ makes it possible to implement in the solutions of
equation (13) any allowable spectrum A* represented by both real numbers and
complex conjugate pairs, regardless of their multiplicity and value of the k. It is
further shown in numerical and analytical examples.

For matrices with the desired spectra ®j, @y, ..., ®k_;, one can introduce
parameterization based on similarity transformations
S I P _m-1 &
Q) =Ty PoToy, @1 =Ty CiTe,,...., Pkt =Ty, Pr1Tay
where  Tg,, To,>...,Tp,_, are non-singular transformation matrices;
@y, Dy, ..., D, are matrices with the same spectra as the corresponding

matrices @y, Dy, ..., Pi_;, but having a simpler (for example, diagonal) form.
Moreover, we note that in the general case, the desirable block-matrix
polynomial from (13) does not have to be resolved into matrix factors (15). The
main thing is that the solutions of equation (13) form a given spectrum A*.
Therefore, the desirable block-matrix polynomial, written in the form of
vector P* (12), provides the parameterization of the desired controller matrix K
both by parameterizing the matrices included in it ®¢,®,...,P_;, and by

ISSN 1812-3368. Bectuuk MI'TY um. H.9. baymana. Cep. EcrecTBenHble Haykm. 2020. Ne 2 45



A.V. Lapin, N.E. Zubov

adding more parameters to its record that do not change the set of solutions of
equation (13). This allows, in addition to the desired pole placement, to
simultaneously solve other special problems, for example, to minimize the norm
of the controller matrix.

Proof of Theorem 2. In considering the class of dynamic systems with
vector control indicated in Theorem 2, we assume that the matrices A, B, and
also all the matrices introduced below are divided into blocks of dimension
mxm, unless a different partition is introduced. Let us denote such blocks by
lower indices [0, p]. For example, Ak (n=1, p=k) is the upper right block
of the matrix A.

Based on the derivation of the Bass — Gura formula for systems with scalar
control [13], we reduce the considered pair of matrices(A, B) from (4) to the
block canonical form

[ Omsm | I | O | | 01xm [0
Ouscrs | O | 7. | | O
O T I S . (6)
Oy | O | Oppers | T 0o
R P P Py | Ly |

a similar controlled Luenberger form [13, 14] for the scalar control case. In this

form, the state matrix A is a block analogue of the accompanying matrix of the
characteristic polynomial of the original state matrix A. In the bottom (k-th)

block row of matrix A block-matrix coefficients of vector (10) are written. A
pair of matrices (16) corresponds to the differential equation written in the
Cauchy form

q® +P_q* )+ +Pq+Pq=1,
where q (=0, 1, ..., k) is the p-th time derivative of the vector q e R™.
The Laplace transformation of this equation allows us to state that the
characteristic polynomial of a matrix of the form A is determined by the
equality
poly(A) = [A¥Ly + 257 1Py + ..+ AP + By |. (17)

Next, we turn our attention to the algorithm for reducing a pair of matrices
(A, B) to block canonical form (16). By analogy with the Bass — Gura
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algorithm for systems with scalar control [13], the reduction is carried out in
two stages.

The first similarity transformation is performed with a non-singular
transformation matrix (8)

T, =Q. (18)

As a result of such a transformation, taking into account (10), we obtain a
pair of matrices

b O
A=T'AT; =| O | | | O | ,
L b O | R
[Oon |+ [ O | Tow | —Prct_
o (19)
Ln
0srm
B=T'B=
051m
_omxm_

Comparing (16) and (19), we note that A = AT.
The second similarity transformation is performed with the transformation
matrix

T, =07, (20)

where

Q =[AOB |AB |- 1 AF2B | Ak‘lB} (21)
is a matrix formed from the first k block columns, i.e., from the first # columns
of the Kalman controllability matrix for a pair (A, B).

Let us show that the matrix Q is invertible and define the matrix inverse to
it T,. To do this, we consider successively the block columns of the matrix (21)

using the values of A and ﬁ from (16). The first block column consists of zero
blocks in all positions except the extreme bottom position, in which there is a
unit block. In each subsequent block column, after multiplying the previous
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column from the left by the matrix A all blocks are shifted one position up. At
the same time, the block that was in the extreme upper position disappears, and
in the vacated extreme lower position, new blocks appear successively from

column to column. Thus, the matrix QO has a lower block-triangular view with
respect to the secondary block diagonal:

_Omxm ! 01n1xm ! : ! 01m1xm ! Im
| | | |
N Omxm : omxm : . : Im : R1
I R R @
0nxm i | . i . i . iRk_z
| Lo | R R Ry |
where
Im> n= 0;
R.={ n
n _Z Pk_uRn_p,nzl, 2, ceey k_]..
u=1
Assuming P, =1,,, it is convenient to rewrite the last equalities as
n Ly, n=0;
P Ry = (23)
Eo e {Omxm,nzl, 2, .o, k-1

Matrix (22) belongs to the class of recursively defined block matrices

I, r=0, Ry

~ R
Q, = [ Omrm | Ly Rira=| . |.

~ ! , relN, :

Q1 Ry R,

Block-triangular matrices of the form Q, are invertible, since the block
diagonal with respect to which the triangular form is obtained contains only unit
blocks. Let us invert these matrices using Frobenius formulas for inverting block
matrices [15]:

L,, r=0;
-1 — | -1 z =
Q7 I:Ormxm ! Lo ] L : OTxr’m _ —Qr_lR[lrl] : Qr_l reN
Ly i 0r1xrm R i Q4 I, i 0xrm

Hence if r = k—1 by recursion, we find the matrix inverse to (22):
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Qi i ijz i i Q i L,
- Qk-2 | : b I} Omxm
e e R A A (24)
& | b O
L L [ O | 1 Oen | O |
where
L, n=0;
= —%fQuRmﬂ,n=l,L.”,k—L
n=0
Since Ry =1,,, the last equalities can be rewritten as
d L, n=0;
p=0Q“Rn_” _{Omxm, n=1 2, ..., k-1. (25)

Comparing formulas (23) and (25), successively for values
n=0,1 ..., k=1, we could conclude that Qn=P;,. Thus, formula (11)
follows from (20) and (24).

Further, let us show that using the second similarity transformation with the
transformation matrix T, (11) the pair of matrices (A, B) (19) becomes the
canonical form (A, B) (16).

The transformed state matrix, taking into account (11), (19) and (22), is
equal to

TAT, = Q (AT, ) =
- 0

Omxm I Omxm I tee I Omxm I Im _PO ! mxm ! ! Omxm ! Omxm
| | | | | | | |
Opsm | Opmxmn o 1 Iy 1 Ry || Oppscy | Py R Y
O R I A S
) | L | | | B
Omxm 1 L1 | Ri—o 0 xm ! Py ! ! !
B Im i Rl i T i Rk—2 i Rk—l__0m><m i Im i 0% m i i 0m><m_
_Omxm I Ly IOmxm I I 01 xm ]
I 1 I I I
0 xm i Z Rl—qu—u i L i i
| =0 | | I
P : | | | 01 xm
= ) ! | 1 |
0 xm : Z R(k—2)—qu—p. : : z Rl—p.Pk—u : Ly
| n=0 | | p=0 |
e o 2 | 1
—Po : -P, + z R(k—l)—qu—p : : —P + z Rz_qu_“ : —Pr + z Rl—qu—u
L | u=0 | | u=0 | p=0 ]
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Here there are sums that differ from the sums that are written in (23), only in
the order of the factors P;_, and Ry, in each term. However, these sums, like
the corresponding sums in (23), are zero, since the matrix (22) is block-
symmetric. Indeed, then in (21)

- [Omxm | Omm |+ | O | I JA? |

| Lo [ O [ O |1 R

Q=07 = : ) (26)
(O | O |+ | O | T ] A2
[Omsn O || O | 1 JA57

since A=A'. Let us consider successively the block rows of the matrix (26)
using the value A from (19). The first block row consists of zero blocks in all
positions except the extreme right position, in which there is a unit block.
In each next block row, after multiplying the previous row from the right by the
matrix A all blocks are shifted by one position to the left. In this case, the block
that was in the extreme left position disappears, and in the vacated extreme right
position, new blocks appear successively from row to row. Thus, matrix (26) has
the form (22), where

I,, n=0;

R,={ 1
T =3 Ry P =1 2, o, k-

p=1
Since Py =1, the last equalities can be rewritten as

%R P b =0, (27)
— 7 k_ =
u:() A : Omxm)TI:]-, 2) ceey k_l,

So, the transformed state matrix Ty AT, coincides with the state matrix A

in canonical form (16).
The transformed control matrix is

_Omxm ! 01 xm ! : ! 01 xm ! L | _Omxm
B Omxm i Omxm i ' i Im i Rl omxm Omxm
T;'B=QB = | T A
01 xm i I i . i i Ri—2 || Omxm 015 m
B L i Ry i : i Ry i Rk—l_ _Omxm_ L L N

i.e., it coincides with the control matrix B in canonical form (16).
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The matrix of the complete transition from a pair (A, B) to a canonical

form (A, ]:3) is equal to the product of the matrices (18) and (20), i.e., (8) and
(11) of two successive similarity transformations:

T(A,B) = T,(A, B)T,(A, B) = Q(A, B)Q! (A, B). (28)

We proceed to the solution of the modal control problem, i.e., finding the

controller matrix by the state K for a pair of matrices (A, B) in canonical
form (16). The state matrix of a closed-loop system is

Om xXm : Im : Om Xm : : Om Xm
o R l
mxm : mxm : : :
S L
Omxm | O | O 1 I
o | o | | = | =
Ky —Po | Ky P | | —Kk-11 = Pr—2 | =K1,6) = Pie1 |

It has the same structure as the state matrix A. Therefore, by analogy
with (17) the characteristic polynomial of the matrix of a closed system has the
form

poly(f&—]:SI:() =
= ‘kklm + k-1 (I%[l,k] +Pr ) +...+A (Iz([l,z] +P ) +(I:<[1,1] +Py )‘ . (29)

This polynomial must coincide with the given polynomial (13). Comparing
(13) and (29), we find the controller matrix for the transformed system, i.e., for a
pair of matrices in canonical form (16):

K=pT-pT.
The controller matrix for the original system (6) is determined based on the
inverse similarity transformation with the transformation matrix (28)

K =KT-' = (P"7 —PT )(Q(A,B)T:(A,B)) ",

which coincides with the formula (14). Theorem 2 is proven.

In the practical application of the proved formula (14), it is recommended
to carry out calculations in the following order.

First, (within the framework of the problem statement), the desirable block-

matrix characteristic polynomial is formed in the form of the vector P*7 from
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(12) using the given spectrum (9) by decomposing into matrix factors (15), or in
another special way in order to simultaneously solve additional problems
(minimizing the norm controller matrices, zeroing some of its columns, etc.).

Next, the condition (7) is checked and, when it is satisfied, matrix Q (8) is
written. If it is reversible, the inverse matrix is calculated Q~!. Under conditions
(7) and (8) of Theorem 2, the controller matrix K can be calculated using the
generalized block-matrix Bass — Gura formula (14) in accordance with the
algorithm below.

From (10) is calculated the block-matrix vector PT of coefficients of the
original block-matrix characteristic polynomial of the state matrix A.

The matrix of the second similarity transformation is written T, = Q!

from (11) and its inverse matrix (z) =T, U from (22).
The desired controller matrix K is determined by the formula (14). By

virtue of the fact that the inverse matrix was previously found Q~!, in order to
avoid the inversion of a more complex matrix, it is advisable to use the equality
(o) =10

The check is made to obtain a given spectrum eig(A —BK) = A* by forming
and solving a characteristic equation |Mn —(A—BK)| =0 with respect to a
variable A.

Examples. Let us consider the application of the generalized Bass — Gura
block-matrix formula (14) using numerical and analytical examples.

Numerical example. Let there be a linear stationary dynamic object with a
pair of state A and control matrices B, whose elements are formed using a
random number generator:

[ 0.7784 1 0.6151| 11796 | 0.0661 i —1.0864 | —2.1154 |
—0.2465 { 0.2795{ 0.8946 | —0.6379 | 0.2403 { 0.6817
-0.9035 i 0.8189 i —0.1429 i —0.8193 { —1.0462 | 0.0087
-0.4959 { 2.0475{ -0.5935: 0.9680 { 0.6187 { 0.3343 |’

0.3745 1 -0.3237 { 0.2489 ; 0.0303 | 1.3050 { —0.5474
—2.3705 | —0.9805 | —1.1298 135111 1.0235 | —16510

[ 0.8928 | —1.3187 |
—0.5071 | —0.4741
—0.3298 | 0.9874
0.1684 | —2.0730 |’
2.5367 | 1.2440
2.2936 | —0.3152
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It is required to calculate a controller with a matrix K, that provides the
matrix of a closed-loop system object-controller A —BK with a given spectrum
A* ={-1£2i, -3, -3, -3, =3}, where i is the imaginary unit and the
desirable block-matrix characteristic polynomial calculated according to (15) in
the form (12):

PT =[P} | PP =
=|:—(I)()(I)1<D2 : (I)()<D1+(I)1(I)2 +(I)()<D2 : —(I)()—(I)l—(l)z:|=
_[95—185155—12575—2}

18] 912 15,2 7]

Here
1] 2] |
D, = i) eig(®y) = {—1£2i};
31 0]
q)l = I 0 g _3_> elg((Dl):{_3) _3})
(-3 0] .
D, = 0 ; 5 eig(®,) ={-3, -3},

ie., eig @y Ueig @ Ueig®, = A™.
The solution of a numerical example. In the problem under consideration,
the dimensions of the state (n=6) and control vectors (m=2) are such that
their ratio k =n/m=3 is an integer. A pair of matrices (A, B) is completely
controllable according to the Kalman criterion, moreover, matrix (8)

Q=[B|AB | A’B|=

[ 0.8928 | —1.3187 | —7.6026 | —0.9750 | —7.6429 | —3.0204 |
-0.5071 { —0.4741{ 1.4090 { 2.4822 | —2.9488 | 4.7057
—0.3298 | 09874 | —=3.9466 i 1.0563 | 4.9823 | 2.9005
0.1684 { —2.0730 { 1.2140 ; —2.2451 10.9659 { 4.2704 |’
2.5367 { 1.2440 { 2.4765: 1.6386{ 0.1927 { 0.3608
2.2936 | —0.3152 | —2.2096 { 1.4682 | 28.9222 | —5.0963

composed of the first three (k=3) block columns, i.e., the first six (n=6)
columns of the Kalman controllability matrix, has an inverse matrix

[ 0.1354 | —0.0460 | —0.0221 | 0.1184 | 0.3377 | —0.0122 |
—0.1563 { —0.2959 | 0.2889 | —0.0939 { 0.1178 | —0.0864
_1-0.0709 | 0.0100 ; =0.1013 ; 0.0041 ; 0.0153 | —-0.0019
0.0189 ; 0.2767 { —0.0554 { —0.1374 { —0.0354 { 0.0951 |
-0.0192 { —0.0088 ;{ 0.0171{ 0.0113 ; —0.0130 ; 0.0215
-0.0019 { 0.0233 § 0.0970 { 0.0816 ; 0.0542 | —0.0461
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Thus, all the conditions of Theorem 2 are satisfied and the controller matrix
K can be calculated using the generalized Bass — Gura block-matrix formula
(14).

We calculate from (10) the block-matrix vector of coefficients of the original
block-matrix characteristic polynomial of the state matrix A:

PT=[R | | P, ]=—(07AB) =

_[12.5604 | —3.7503 | —4.9936 | 1.2357 | —0.9547 | —0.1848
~|-1.0763 | 3.3623 | —0.9861 | 0.6461 | —1.2236 | —0.5822 |’

We write the matrix of the second similarity transformation T, = Q!
from (11)

[—4.9936 | 1.2357 | —0.9547 | —0.1848 | 1 | 0]

Pl p |1 —0.9861 | 0.6461 | —1.2236 { —0.5822 { 0 | 1
b2 N2 | [ -0.9547 | —0.1848 1 0/0(0
=Py L 1020 =1 9536 | _05822 0 11010
IZ i02><2 i02><2 ’ 1 ’ 0 0 0io01lo0

0 1 0 01010

and its inverse matrix Q= T, ! from (22)

00 0 0 1 0
00 0 0 0 1

| |
-1 - gM ;OIM; _IIZ, _|ojo 1 0 }0.9547 | 0.1848
2 7| TEe 2 2 171040 0 1{1.2236| 0.5822 |
Lop =R Py=P] 111009547 | 0.1848 | 6.1313 | -0.9517
10| 1]1.2236 | 0.5822 | 2.8667 | —0.0810

We determine the desired controller matrix K by the formula (14)
K=(P7T-P)Tyi0 =

—4.0985 | —4.3175 | 1.3634 | 1.3638 | 0.8989]

_[-1.4543 | | |
- 2.7229 | 1.2575 | —0.8313 | 1.1975 | 2.4579

-3.9384

We perform a check. We form the characteristic matrix of the closed-loop
system object-controller

Z=2—(A-BK)=

L +3.1167 —7.8648 —6.6925 2.2473 0.7249 —0.3231]
2.8512 { A+0.5077 0.6984 0.3407 —1.4996 —2.3029

—2.5056 3.2213 | A+2.8085 —0.4511 1.7788 2.1217
8.4155 —8.3822 —2.7403 | A+0.9848 -2.8715 —-5.2782

-8.9631 —6.6857 -9.6369 2.3941 | A+3.6444 5.8855
0.2765 -9.2783 -9.1694 2.0381 1.7271 |} L +2.9380
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and we find its determinant

|Z| =25 +14)° + 831" +276)° + 56712 + 7021 + 405 =
=(22 +2k+5)(k+3)4 :

Thus, eig (A—BK):{—1i2i, -3, -3, -3, —3}:/\*, and the calculated
controller by the state with the matrix K solves the posed problem of poles
placement.

An analytical example. A linear stationary dynamic object is given with a
pair of state A and control matrices B, containing only real elements:

apn 0 0
0 0

(S
=
~

a

w

3

oo oo
oo oo
Na
w

S O o O
—

as4 bsy

ae2

>

I
O O O O O O o o o
—_ O O O O O o o O©
S O O O O O o o o
S O O O O O o o o

=]

I

S

SO O O O Ok~ O O O

Ob—*OOOOUw?

S O O

S O O O o O
S O = O

S O O O o o o o
(= ele e

It is required to calculate a controller with a matrix K, that provides the
matrix of the closed-loop system object—controller A—-BK with a given
spectrum

A =1 02 =523 —M3i, Q4 = S45 —Musi, §6 = Se7 —Me7i, Pg = Sg9 —Migoi
=491, . . . e
&3 = $23 +mp3i, §s5 =545+ mMysi, Gy =Se7 +Mg7i, Qg = Sg9 + Mgoi

where 01, $23, M3, Sa5, M5, Se7, Me7, Sg9, Mgo € R.

In the considered problem, in addition to the desired pole placement, it is
proposed, using the parameterization of the desirable block-matrix
characteristic polynomial, written in the form of vector P* (12), to further
reduce the norm of the controller matrix K (the sum of squares of its
coefficients). For this reason, let us calculate the block-matrix vector (12) based
on the expansion (15)

[-DoD1D; | D@ + DD, + DD, | —D — D - D, |,

where parameterized matrices with the desired spectra (due to similarity
transformations with real matrices Tg,, Tp, and Te,) are introduced
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| |
| | 4 04 = S45 —Mysi
©)=Te, | 0 | s45 |mys |T, 3 eig(®g) =1 01, b
i | 05 = S45 +Mysi
0§ —1mys | s45
@
Sp3 —My3i ! 0 ! 0
H H
H H -1
(Dl :T‘bl 0 : Se7 : Mgy T<l)1’
0 | —Me7 | Se7
@

b6 = S¢7 _m67l}
b

eig (®1) = § O = s23 —mMy3i, .
Oy = s7 +meyi

$y3 +mysi ; 0 ; 0
| |
- - -1
D, =To, 0 | Ss9 | Mo |Tg s
i i
0 | —Mg9 | Sgg

g = sgo — Mgoi }

eig (®2) =1 ¢3 = 523 +my3i, .
g = sgg + Mggi

To simplify this illustrative example, the transformation matrices are set equal
and contain one variable parameterk € R (x #0):

Moreover, when writing the block-matrix vector P* (12) we introduce an
additional parameter c € R, located in a position that does not affect the set of
solutions of the characteristic equation (13). Let it be given

PT =[P | P[P =

Blo [0 [R[0 [ [A] 0 |0
= 02 $3 megfof S ZKmZEOf S1 ;Kml
0;—7713/1{; S3 ;0;—"12/1(2 S ;O;—ml/l(g S1

Here, for brevity, the following notation is introduced:
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h==01-02-03€R, fr=0102+0203+0301 €R, f3=—019203 € R,

51=—g1+hl eR, Sz:_gz-zi'hz eR, 53=—g3;h3 eR

b

ieR,

ieR, m;=

m =g1—_hlie]R, m, :gZ_hZ
2 2

g3—hs
2

81=—04 =6 — g =51 —mi, g2 = Pade +PePs +Psds = 52 —mMyi,
23 = —04d6ds = s3 —m3i,

M =—¢5 —¢7 =g =s1 +1mi, hy = 0507 +¢709 + o5 = 52 + M3,
h3 =—0s50709 = 53 + m3i.

With such a vector P* the left side of equation (13) takes the form

fk ; 0 ; ch 9
WLy +22P + A + B |=0 | s | kmy|= fi(s7+m] ) =TT (A —dy).
0 f—mk/K P osu n=l1

where

i =22+ il + foh+ f3=(A=01) (A —2) (A —93),

. +hy, gx—hxi
2 2

) =AM+ A+ 550453 = , oy =mA Ak +ms =

>

G =R+ @A+ gk + g3 =(A=04) (A —d6) (L —0s) =51 —my,
h}L =7\,3+h17\,2 +h27\,+]’l3 =(7\,—(I)5)(7\,—(|)7)(7\,—(|)9)=S)L + my i.

Therefore, regardless of the parameter values k and ¢ the set of solutions of

equation (13) with respect to A forms a given spectrum A*.

The solution of an analytical example. In the problem under consideration,
the dimensions of the state (#=9) and control (m=3) vectors are such that
their ratio k =n/m =3 is an integer. A pair of matrices (A, B) is completely
controllable according to the Kalman criterion, moreover, matrix (8)

Q:[B}AB}AZB]:

0 0 0 0 0 m zbz 3 a17b41 0 0

0! 0 {by 0 0 0 0 0 0

0040 0 fassbsy | O | assassby |assassbsy | 0

by 010 0 0 0 0 0 0

= 0 b52 0 a54b41 0 0 0 0 0

0 0 0 0 0 6162b23 0 0 0

0:0i0 ba 0 0 0 0 0

0 0 0 0 b52 0 a54b41 0 0
0l0!0 0 0 0 0 0 ag2b23
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composed of the first three (k=3) block columns, i.e., the first nine (n=9)
columns of the Kalman controllability matrix, we have an inverse matrix

Q1=
_ X )
0 0 0 —i 0 0 0 0 0
by
0 0 0 0 |1 0 R 0
bs, bs,
1
0 — 0 0 0 0 0 0 0
b23
1
0 0 0 0 0 0 — 0 0
by
1
S L S ) 0 0 o | B2 g 1 L 0
a17bs, a17a62bs) bsy
1
0 0 0 0 0 0 0 0
aeabns
1
0 0 0lo -——%2__ 1 9 0 0
a17byy a17a62b41
1 1
0 0O i—i 0 0 0 0 - 0
a33035bs5, az3bs
1
0 0 0 0 0 0 0 0
L aeabs |

Thus, all the conditions of Theorem 2, are satisfied, and the controller
matrix K can be calculated using the generalized Bass — Gura block-matrix
formula (14).

We calculate from (10) the block-matrix vector of coefficients of the original
block-matrix characteristic polynomial of the state matrix A:

0;0;0;0;0;0; 0 10 ;0
ro| b L

PT =[P, |P [P, |=—(Q'A’B) = 01001000 -ass 2 a3 0|,
Poob bbb b | i
RN 2 %

0{0{0{0{0{0] O | 0 |0

We write the matrix of the second similarity transformation T, = Q!
from (11)
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0 0 10 0 0 {0f{1i0}0
b
0 0 {0|—assi—t1i-as;510/0{110
bs,
0 0 {0 0 0 [0/0i0i1
P! Pl 0 0 |0 1 0 10i0!010
| |
= | | =
E P2I13:03X3 —a54@ —a33 10 0 1 [0ioiojo]|
I3 | 03x3 | 033 bsy
0 0 10 0 0 l1loiolo
1 0 10 0 0 10i0i010
0 1 |0 0 0 {0{0{010
0 0 i1 0 0 {0{0[0{0]

0i0i0 0 010 1 0 i0
0i0i0 0 0 i0 0 1 {0
0i0i0 0 0 i0 0 0 il
0i0:i0 1 010 0 0 {0
0353 !03><3 ! I3 ololo 0 Lo by 0
_ asy— {a
T, =053 I3 | -P, |= >4 bs, 33
| |
I; |-P, |P}-P 0 0
0 0 0
b b
0:1:0 (154i aszs i 0 61336154i a§3 0
bs, bs,
_O 0il 0 0 i0 0 0 0_
We determine the desired controller matrix K by the formula (14)
K=(P7T-PT)T;'07! =
f5 0 0 S 0 1L 0 0
a17b41 b41 as2 b41
_ 0 Ky Sas3 ai ass + 51 Ky 0 $3 Kms
by | assazsbsy | bsy | bsy | agbas azsbsy | agbs |
0 S1 o f Mg 0 | — m 52 0 ms 3
L b3 Ka33assbsy Kbsy | asabn3 Kassbsy | asbos |
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where
Zaz; +Hhas;
Sazz = 6133 + 5161%3 +Sya33 + 83 = f eR,
—hn
Myss = MA%, +Mpazs +my = @1 eR,

azy =033+ £103; + 82033+ g3 = (a33 — ¢4 ) (433 — §6 ) (433 — 98 ) = Sazs — Magis
hagy = a3+ mass + hass +hs = (a33 =05 ) (a33 =97 ) (433 = 99 ) = Saz3 +Mass,
o ¢ fmr
by a7ba

Analyzing the form of the controller matrix that provides the specified pole
placement, let us solve the additional problem of reducing its norm (the sum of
squares of its coefficients). To do this, we find the values of the parameters ¢
and «, that afford a minimum to the norm of the matrix K as a function of the
two indicated arguments. We consider only those coefficients of the matrix K,
that depend on the parameters ¢ and «.

The parameter ¢ only affects the matrix K coefficient located in the sixth
column of the first row. By assigning

one can reset this ratio.

The parameter k is located in the matrix K in the numerators of the
coefficients of the second row (columns 2, 6 and 9), as well as in the
denominators of the coefficients of the third row (columns 3, 5 and 8). The sum
of squares of these coefficients is

2 2.2
2 ( , mi+m} 1 , Mgy, T1M3035

S(K)=—2 mi + > | Mt —
23 ag Kb, a3z3dis

The minimum of the function S(x) is achieved, when

ﬁ_Z_K( 5 m%+m§J_ 2 ) mﬁ33+m§a§5 B
dx b3 : ag Kbz 1 3303 o
i.e.,, when
B by ae m§33 +(m12“§3 +m3 )“%5
“\| b2 aszzass mal, +mi +md
by virtue of the fact that
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2 2.2
d%s 2 m2 + m? 6 m. . +m3azs
—=— ml2 2 3 m12+—a33 >0

2 2 2 412 2 :
dx® by, ) K*bs, a33d3s

We perform a check. We form the characteristic matrix of the closed-loop
system object—controller

Z=Ay—(A-BK)=

A —da)) 0 0 0 0 —ay7 0 0
b
0 | Aty | Taba 0 _ miby3 Sy b s
Ka33a3sbsy Kbs), ags) Kazsbsy | as
0 0 X—a33 0 —aszs 0 0 0 0
N 0 At f 0 ba | ol 0
_| a7 ag2
o | Kmibsy Sazs 0 | htasts Kmpbsy 1S3 Kmsbsy
by3 a33a3s ag2b3 as3 | asabys
0 —ag) 0 0 0 A 0 0 0
0 0 0 -1 0 0 A 0 0
0 0 0 0 -1 0 0 A 0
0 o 0 0 0 1 Lo 0 ro

and we find its determinant. Having noted that for this matrix in block row 3

Z;,=0ss, Zpyy=-L, Zy, =4,
and the block Zj; ;) has a triangular form, we calculate |Z

, successively applying
the second and first Schur formulas on the determinants of block matrices [15]:

7y, EZ[Lz] Zy13) 23, [ | 7]
- [3,1] [3,2]
Ziy ! Ziny | B |

Z|=
2,11 | Z[2,2]

|Z3,3| =

Zia | Zna +A 72

= 3 =
L[z,u i Zpo)+ 7»'12[2,31]
= |22 (222 - 2o Z Y 2o ) + (223 - ZoaZiy 2o )| =

Bl L L ey m £ (b, a5 f)
A b52 7&—6133 a7k Atsy A ae2 b23 ayy Atsy A
1 mlmk) bsyk ( ms;, )
=A(A—azz)(A+s1)| 0 s+ my, — =
( 33)( 1) 7\,—6133( * 7\,+51 a62b23 * 7\,+Sl
0o | _Gebs 1 m )
b52K k—a33 K+51 7\,+51

9
=fx(5i+m%)=l'll(%—¢n)-
]"l:
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Thus,
eig(A—BK)={¢1; ¢2> ¢3) ¢4> (1)5) ¢6> ¢7> ¢8> ¢9}:A*’

and the calculated controller by the state with the matrix K solves the posed
problem of poles placement. Moreover, it is shown how, using the para-
meterization of the desirable block-matrix characteristic polynomial, it is
possible to reduce the norm of the matrix K (the sum of squares of its
coefficients) in comparison with the value of this norm without parameteriza-
tion (for c=0 and x=1).

Conclusion. The compact analytical formula for calculating the controller
matrix is obtained for solving the synthesis problem of the modal controller
providing desired pole placement by means of the fully measured state vector in
linear dynamic systems with vector control. This formula represents a
generalization of the known Bass — Gura formula used for similar systems with
scalar control. In the proof of the corresponding theorem, non-singular
similarity transformations and operations with block matrices were used, in
particular, block transposition. However, the final formula does not require
additional reduction of the original system to special canonical forms and can be
directly applied to systems which have state-space dimension divisible by the
number of control inputs and which have the first block columns of the Kalman
controllability matrix (by a number corresponding to this multiplicity) forming
a non-singular matrix. The generalized block-matrix Bass — Gura formula gives
a countably-infinite set of solutions to the same problem of the desired pole
placement under vector control and can be used to simultaneously solve other
special problems, for example, to minimize the norm of the controller matrix.
Numerical and analytical examples of the use of the generalized block-matrix
Bass — Gura formula for the described class of systems with vector control are
considered. They confirm the possibility of applying this formula regardless of
the ratio of the dimensions of the state and control vectors, as well as on the
presence and multiplicity of real poles or complex-conjugate pairs of poles in the
original and desired spectra of the state matrix.

Translated by K. Zykova
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«IpaBUTaIIOHHDbIE BOTHBI
paHHelt BcenneHHOI»

W.B. @omuH, C.B. YepeoH, A.H. Mopozos

rPABUTALLMOHHDIE
BOJIHbI PAHHE
BCENEHHOW

PaccmoTpenbl npyMeHeHre CKaIApHbIX IO7IEN B KOC-
MOJIOTMM ¥I METOJBI IOCTPOEHMSI MOJe/ell paHHel
BcenenHoit Ha OCHOBe X IMHAMUKM. BBITIONTHEH aHa-
JIN3 [UHAMMKM BceleHHOV Ha pasIMYHBIX CTafMAX
ee spomonm. IIpoBefieH pacyeT mapamMeTpoB KOCMO-
JIOTMYeCKUX BO3MyIeHnL. [IpefcTaBIeHsl MeTO/bl
BepruKanuy MHQIANIOHHBIX MOJEJIEl U HOBbIE
METOJIBI AeTEKTIPOBAHYIsI [PABUTAL[VIOHHBIX BOJIH.
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M1 HeJIMHEITHOII TeOPUI TIOTIsT, TEOPUIL IPaBUTALIVIN,
KOCMOJIOTMY U TPaBUTAIL[IOHHO-BOITHOBBIMU UCCTIe-
) maenene [OBAaHMAMIM, a TAKKe CTYHEHTOB CTapIINX KypCOB,

MAarmucCTpoOB I aCOVMPAHTOB.
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