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Abstract Keywords

A hypothesis was proposed that during the bipedal Nonlinear dynamics, bipedal
walking, there appear stable periodic movements in walking, walking wheel,
certain variables (self-oscillations). In this case, it is rimless wheel
possible to easily change parameters of this periodic

locomotion using open (without feedback) control

loops with respect to some of the variables. As the first

stage in testing this hypothesis, dynamics of the

walking wheel downward movement along an inclined

plane was analytically studied. Walking wheel is the

simplest model of passive bipedal walking. When it

moves, energy is supplied to the system due to the force

of gravity action. It is shown that point mapping of the

wheel angular speed alteration per step (Poincaré map)

in the overwhelming majority of cases has one fixed

point. This fixed point corresponds either to stable

periodic solution (self-oscillation), which is the wheel

rolling down an inclined plane, or to the wheel

movement ending with its termination as a result of the

endless series of impacts with swinging on two legs. In

the degenerate case, the Poincaré map has two fixed

points. One of them corresponds to the unstable

limiting cycle matching the wheel rolling, and the Received 28.01.2020
second corresponds to a wheel stop. In this case, the Accepted 30.06.2020
limiting cycle is stable outside and unstable inside itself ~ © Author(s), 2020

Introduction. The problem of creating and controlling the motion of automatic
bipedal devices capable of moving like a person attracted attention of scientists
and engineers since the time of Leonardo da Vinci. Various approaches are
known to solving the task of controlling the motion of bipedal devices. Let us
consider some of them. This is construction of periodic movements in terms
of variables [1], use of “rigid” tracking systems [2], pulse control [3—5], methods
of controlling systems with zero dynamics [6] and passive bipedal walking [7-8].
Results presented in [9-10] are important milestones in understanding the issues
of motion control and creation of real layouts of bipedal robots.
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If a bipedal robot has big controllable feet, its movement could be organized
within the frames of static stability. However, to organize the motion of a bipedal
robot capable of moving within the frames of dynamic stability, including a
device without controllable feet, control system is forced to solve a very complex
problem of controlling a mechanical system with a lack of controls. In this case,
it is impossible to ensure arbitrary programmed motion along all degrees
of freedom of the robot. Periodic programmed motion is usually constructed,
and algorithms for stabilizing this motion are elaborated. When a robot capable
of changing parameters of its motion is moving, the motion control system has to
integrate differential equations of the its motion even when moving over a simple
terrain (flat horizontal surface or surface with slight irregularities). At the same
time, a moving person does not integrate differential equations of motion, and,
when moving on a simple and relatively flat terrain, a person does not think at all
about the process of organizing such walking. Everything is carried out at the
subconscious level. It could be assumed that control over the bipedal walking
may be carried out much easier. Perhaps, walking is a constant process of falling,
when a person substitutes another leg to prevent a fall. However, the motion
parameters could be easily changed. The motion control system is built quite
simply due to existence of stable periodic motions in terms of variables (self-
oscillations). To control motion in terms of certain variables, open (without
feedback) control loops could be used in the same way as it is done in the passive
dynamic walkers [7-8] and hopping robots with elastic elements in the leg
structure [11-13]. Parameters of these stable periodic solutions (self-oscillations)
could alter due to the operating independent motion control loops along other
degrees of freedom of the robot.

This work is the first step trying to clear up this hypothesis. Let us start with
studying an object that is much simpler than a bipedal walking device, i.e.,
a walking wheel, or a wheel with legs (Fig. 1), proposed by A.M. Formalsky [3].
This model was considered independently of him somewhat later by T. McGeer
[7]; the obtained result was used to create a device demonstrating passive bipedal
walking without the use of drives in the leg joints. Walking wheel is the simplest
model of the flat bipedal walking device motion. If during motion the bipedal
device (person) substitutes a new leg not to fall forward, then the walking wheel
next leg gets in contact with the supporting surface as a result of its rotation
(rolling). This model of the walking device motion is of interest due to its
simplicity. Plane motion of a rigid body is under study, while a walking device
(person) appears to be a system of several rigid bodies with drives in hinges
connecting these bodies. Walking wheel was also proposed to be used by
D.J. Todd [14] in the design of wheeled off-road robots. Walking wheel
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a b

Fig. 1. Walking wheel as a model of bipedal walking” (a) and design diagram
of a walking wheel on the inclined plane (b)

resembles ship steering wheel, gear, cart rimless wheel, rigid wheel with large
ground lugs, or a wheel with very rough tread when moving on a hard surface.
Foreign literature uses the term rimless wheel.

When the foot of a walking wheel is placed on the supporting surface, an
impact occurs, and it is assumed that this is an absolutely inelastic impact, and the
leg is not sliding on the supporting surface. When the impact occurs, loss of
energy is taking place; as a result, when moving on a horizontal surface, motion
speed slows down, and the wheel stops [3]. When moving down along the
inclined plane with sufficiently wide inclination angle to the horizon, the wheel
gains stable periodic motion mode (self-oscillation). Energy consumption by the
system is ensured by the work of gravity force. This process was approximately
investigated in [7] in a linearized model of motion under assumption that the
angle between legs of the walking wheel and the angle of surface inclination to the
horizon are small. This problem is analytically solved here in the nonlinear setting.

Results of studying the walking wheel locomotion by methods of simulating
its movement on a computer and prototyping are presented in [15-19]. Interac-
tive mathematical model of the walking wheel motion with animation of its
movement, construction of phase trajectories and possibility to set parameters of
the wheel and of the slope inclination angle, along which it moves, is available
on the Internet [19].

" Source: author unknown.
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Problem statement. Let us consider a solid body (Fig. 1 b), i.e., a disk, to the
edge of which the n identical rods are attached, n>3. Outer ends of the rods
form a regular polygon. Let us call this body a walking wheel. Segment
connecting the C center of mass of the body with the outer end of the rod would
be called a leg (virtual leg). The outer end of the rod would be called a foot.
Suppose that the lengths of all legs are the same and are equal to I. The angle

between adjacent legs is 20, where ou=m/n. Mass is equal to m, J¢c =mp?

is the moment of inertia relative to the center of mass, p is the radius
of gyration relative to the center of mass, p > 0. Wheel position is determined by
the rotation angle ¢, which is measured from the vertical to the supporting leg.
Clockwise direction is taken as the positive direction for angle measurement.

Let us consider flat motion of the walking wheel down an inclined plane
with the B inclination angle to the horizon. Suppose that the supporting surface
is absolutely rough, and the feet are unable to slide on it. Speed of the center of
mass is denoted as V, and angular speed of the wheel — as ®. Motion of the

wheel consists in alternation of rotation phases around the supporting leg foot
and of impacts, when the supporting legs are changed.

Impact accompanying the change in supporting legs. Before the impact
(Fig. 2), the wheel rests on the support surface at point S;_;, which possesses

zero speed. As a result of the solid body rotation around this point, an impact
occurs against the supporting surface at the new point of contact ;. In this case,
the impact is assumed to be absolutely inelastic, the new point of contact after
the impact remains on the supporting surface.

Due to the fact that the ¢ wheel rotation angle is measured from the
vertical to the supporting leg, its value changes upon impact (placing a new leg
on the supporting surface) (see Fig. 2):

o =B+a, ot =pf-a.

« »

Here and after, the “+” subscript denotes value after the impact, and the
subscript denotes value before the impact.
Impact pulses of the supporting surface reaction arise both at the collision

point §;, as well as at the support point S;_;. As a result of the impact, the
initial support point could remain on the supporting surface, or may leave it,
due to the fact that these constrain is unilateral.

Let us introduce the following notations V; = (kg yGi)» Vit=

1

= (&, v&), of, of is the speed of the C center of mass and the angular wheel
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Fig. 2. Impact diagram of the walking wheel second leg contacting
with the supporting surface

speed before and after the impact. Clockwise direction is taken as the angular
speed positive direction and is the positive direction of the ¢, wheel rotation
angle measurement.

Shock pulses appear at the impact moment at the leg supporting points
(shock reactions of the supporting surface); let us denote their projections
on the coordinate axes as X;_j, Y;; in the S;; foot and X;, Y; in the §; foot
(see Fig. 2).

There are unilateral constrains on coordinates of the supporting leg feet are
uncontrolled (supporting leg feet could lose contact with the supporting surface
and move upward). Consequently, vertical components of shock reactions at the
leg support points are not negative:

Yii1 20, Y; 2 0. (1)
If the S;_; foot loses contact with the supporting surface as a result of the
impact, then after the impact the foot speed is directed upward:

j/;i_l =/ -2lsina > 0. (2)

In addition, let us accept the hypothesis that shock reactions at the support
point of this leg are equal to zero [3]:

X1 =0, Yi; =0. (3)
This assumption is tantamount to the absence of pulse controls in the leg

mobility degree, which could additionally “push” the body with a leg losing
contact with the supporting surface.
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Before the impact, the body was rotating around the S;_; motionless foot

and at the moment of the S; foot contact with the supporting surface (before the
impact) had the following angular speed:

o7 >0, (4)
then
xXci=ojlcosa, yci=—;jlsina. (5)
By virtue of theorems on the center of mass motion and system angular
momentum alteration relative to the center of mass upon impact, let us write
down:
m(x&; —ojlcosa) = Xiq + X3
m(yé +ojlsina) =Y +Yj; (6)
mp?(of —o;)= (Yio; = Y;)Isina — (X;—; + X;)Icosa.
Two different types of impact are possible.
Type 1. As a result of the impact, both legs remain staying on the supporting

surface. Shock reactions occur at the support points of both legs. After the
impact, the wheel stops:

Xt =0, y& =0, of =0, (7)
Substituting (7) into (6), the following is obtained:
-moj lcosa= X;_1 + Xj;
moj Isino=Y;_; +Y;;
-mp?o; = (Y1 —Y;)Isino—(X;_; + X;)Ilcosa.

Then

p?+12cos2o. p2+12
Yig = - 2 e Yie ooy (8)
2lsin o 2lsin o

Condition of non-negativity of the vertical shock reaction components (1)
due to (4) and (8) is equivale to the following condition:

2
cosZocS—(%) <0. (9)

Type 2. After the impact, the body starts to rotate around the S; motionless
foot with the angular speed of

+ ct ot S
o > 0, x5 =0] lcosa, yi =o]lsino. (10)
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Substituting (10) and (3) in (6), the following is obtained:
m(o] —o;) Icosa=Xj;
m(o] +o7)Isina=Y;;

mp* (o} —o7) ==Ylsino — X;l cos o

Then
o] =koj;
p? +1? cos? a _ (11)
Y, = 2—————mow;lsina,
p2 +12
where

p? +1% cos2a

k = (12)

p2 + 12
Rotation around the §; foot results from the impact, when and only when

of >0, Y;>0. By virtue of (4), (10) and (11), these conditions are satisfied if

k>0 or
2
cos2a > —(%) . (13)

It follows from (9) and (12) that the impact model is corrected
(deterministic). For any parameter values, only one of the two possible types of
impact is taking place. Let us note that the nature of wheel motion after the
impact depends only on the design parameters and does not depend on the
wheel angular speed before the impact.

Angle o =n/n, where n is the number of legs. With n > 5, the 2o angle
between adjacent legs is acute cos2a > 0, and condition (12) is always satisfied.
At n=4, cos2a.=0 and condition (12) are satisfied, if p#0. Let us note that
p =0 corresponds to the case, when the entire wheel mass is concentrated in its
center of mass. For n=3 cos2a=-1/2 and condition (12) are satisfied,
if p> V.

Let us consider further only the case, when condition (12) is satisfied, and,
as a result of the impact, the S;_; foot loses contact with the supporting surface,

and rotation begins around the §;, at the same time:

0<k<l. (14)

By virtue of (10), 0 < ©f < ©F, i.e., energy is lost upon the impact. With an

increase in the number of legs, the a=mn/n angle decreases, while the k
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coefficient increases. In the limit at n — oo the coefficient is k — 1. Limiting
transition to the infinite number of legs could be interpreted as transition to an
ordinary wheel.

Rotation around the supporting leg. After the impact, the wheel rotates
around the §; foot (see Fig. 1 b). In accordance with the theorem on the kinetic
moment alteration relative to point S;:

(P?+12) ¢ = glsino, (15)

where ¢ is the wheel rotation angle. Let us note that the wheel angular speed is
o =¢. At the beginning of this phase of motion, ¢¢=¢; =B-a, ©¢=o;.
Equation (15) is equation of the inverted pendulum motion.
Equation (15) has the energy integral:
©? gl _(f)

gl
—+ —%—cos +
2 P2+l L p2+12

cos(Pp—a). (16)

If at B <o the wheel reaches its critical position, when the center of mass is
above the §; support point (i.e., ¢ = 0) with the nonzero angular velocity, then
it would pass over this position and collides with the supporting surface by the
next foot S;;;. For this, the following is necessary and sufficient due to the
energy integral (16):

o] > o,

where

Oy = \/pzzfllz (l—cos (B—cx)). (17)

If B=a, then w., =0.
If B> a, wheel position resting on the S;_; and S; legs is statically unstable,
and under the gravity force action at any o] >0 values the wheel rotates

around the §;, foot, then the wheel will continue to move down the slope and
collides with it by the next leg S;11. In this case, the wheel would begin to move
down the slope even from the rest state.

Walking wheel motion non-separation condition from the supporting
surface. When the wheel moves, the constrain at the leg support point
is unilateral. The supporting leg may lose contact with the supporting surface at
high values of the wheel angular speed. In this case, the wheel passes from
“walking” to “running”. This happens, when reaction normal to the supporting
surface required to ensure the wheel rotation, is less than zero (Y; <0). Let us
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consider here it to be unacceptable; i.e., our research would be restricted
to studying the wheel “walking” mode. For this, it is necessary and sufficient that
ateach step Y; > 0.

In accordance with the theorem on the center of mass motion:

Y; = m(gcosB+jic) = m(g cosp—Icos(p—B)p* ~Isin(p—B)p).  (18)

Substituting the @ relation from (15) and ¢? =®? from (16) into (18),
wheel motion non-separation condition is obtained at the i-th step:

® (o], p,a) >0, (19)
where
@ (of ,B,00) =
= min {gcosB— Zglz [2cos(p—P)[cos(p—a)—cosp]—
pelp-a, B+al p?+1?

—Isin(p—P) sin ]—1 cos(o —B)(o] )? } )

Poincaré map. Self-oscillations. If o < w.,, the wheel is not reaching its
critical position, and under the action of gravity starts to rotate in the opposite
direction and collides with the supporting surface by the preceding leg S;_;.
At the repeated collision with the S;_; leg on the supporting surface and due to

the energy integral, ©7;; = -/, then after the impact:
oy = filo]) =—koj. (20)

Relation (20) is the Poincaré map for the angular speed alteration per i-th
step. It is linear and has a single fixed point ®p =0, which corresponds to stable
equilibrium position with support on the Si_; and §; two legs by virtue of the
Koenig’s theorem [20], since:

df

dof

=k<l1.

The k value is determined by relationship (12) and 0 < k <1.

Poincaré map (20) is presented in Fig. 3 a. Angular speed is decreasing ex-
ponentially. It could be shown that each step duration also decreases in geomet-
ric progression. An endless series of collisions is taking place accompanied by
waddling from one leg to the other, but total duration of this series of collisions
is finite.
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Fig. 3. Poincaré map at B<a and ©f <®, (a);at B>a or B<a, ©f >0,
and o, >0, (b); at B<a, ©f >0, and ©, <O, (c); at B<a and ©, =0, (d)

If o} = o, the wheel would reach its critical position for the infinitely long
time.
If B=a or B<a and ©f >w., then the wheel turns over the supporting

leg. The energy integral (16) makes it possible to determine the wheel angular
speed at the S;;; foot collision with the supporting surface. Taking into account

that in this position 0 =0;;; =+ «, the following is obtained:

(0731)? = (0} )? +p22—f_llz|:cos(l3 —a)—cos(B+a) | =

=((Dj)2+24—gllzsinocsin[3, (21)
p?+
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where ®j;; >0 is the wheel angular speed at the end of the i-th step or the same
at the beginning of the (i + 1)-th step.

From (11) for the impact with the S;;; foot and from (21), the Poincaré
map is obtained for the wheel angular speed alteration in the i-th step, which
consists of the rotation stage around the S; foot and the following impact by
foot Si+12

1/2
o} =f(0);')=k|:((0?')2 + 24gllz sinoLsinB:I . (22)
P>+

Map (22) has a fixed point:
2
o, = k 44l
1-k? p? +1?

In accordance with the Koenig’s theorem [20], this fixed point corresponds

12
sin o sin B} .

to a stable limiting cycle, since
df
dof

However, the wheel actually reaches this stable periodic solution only at

=k’<1at o=o0,.

B=za or B<a, of >0, and ©,>wo,. Poincaré map (22) is presented
in Fig. 3 b.

Let us note that stable periodic mode of motion takes place, if at each step
the condition of the wheel motion non-separation from the supporting surface
is observed. For this, it is necessary and sufficient that this condition should be
satisfied at the limiting cycle and at the first step, i.e.,

d(w., B, )>0, D(of, B, a)>0.

At B<o, of >, and 0. <o, there is no periodic solution correspond-
ing to fixed point ®,. This is explained by the fact that the Poincaré map (22)
is valid only as long as the wheel turns over the supporting leg. Over the course
of several steps, the wheel angular speed would decrease until it becomes less
than .. After that, the wheel would waddle from one leg on the other in
accordance with the Poincaré map (20). For this case, the Poincaré map
is presented in Fig. 3 c.

At B<a, of >0, and o,=0o,, the wheel would tend to a periodic

solution corresponding to fixed point ®,. However, this periodic solution is not

stable, since the Poincaré map takes place at ®; <. (20). For this case, the

Poincaré map is presented in Fig. 3 d.
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Conclusion. Problem of the walking wheel motion down an inclined plane
in nonlinear formulation was analytically investigated. The walking wheel is the
simplest model of passive bipedal walking. Probable cases of the walking wheel
movement were investigated for different values of the supporting surface
inclination and of the wheel initial angular speed. It is shown that different
modes of the walking wheel movement are possible. Existence of the stable
periodic solution (self-oscillations) appears to be the most interesting solution.

Translated by K. Zykova
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