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Abstract Keywords 
Results of theoretical analysis of the geometric multigrid 
algorithms convergence are presented for solving the 
linear boundary value problems on a two-block grid. 
In this case, initial domain could be represented as a union 
of intersecting subdomains, in each of them a structured 
grid could be constructed generating a hierarchy of coarse 
grids. Multigrid iteration matrix is obtained using the 
damped nonsymmetric iterative method as a smoother. 
The multigrid algorithm contains a new problem-
dependent component — correction interpolation be-
tween grid blocks. Smoothing property for the damped 
nonsymmetric iterative method and convergence of the 
robust multigrid technique are proved. Estimation of the 
multigrid iteration matrix norm is obtained (sufficient 
convergence condition). It is shown that the number of 
multigrid iterations does not depend on either the step or 
the number of grid blocks, if interpolation of the correc-
tion between grid blocks is sufficiently accurate. Results 
of computational experiments are presented on solving the 
three-dimensional Dirichlet boundary value problem for 
the Poisson equation illustrating the theoretical analysis. 
Results obtained could be easily generalized to multiblock 
grids. The work is of interest for developers of highly effi-
cient algorithms for solving the (initial-) boundary value 
problems describing physical and chemical processes 
in complex geometry domains  
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Introduction. Mathematical models of physicochemical processes (hydro-
dynamics, thermal conductivity, convective and radiation heat transfer, turbulent 
transfer, chemical kinetics, electromagnetism, elasticity theory problems, etc.)  
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in continua mechanics are usually the (initial-) boundary value problems for 
systems of nonlinear partial differential equations. Nonlinear boundary value 
problem approximation on a computational grid leads to a system of high-order 
nonlinear algebraic equations, which numerical solution requires enormous 
computational costs. In this regard, elaboration of effective methods for numerical 
solution of such boundary value problems is of great theoretical and application 
importance. The problems of numerical simulation associated with elaboration 
and theoretical justification of robust, efficient and parallel algorithms do not 
disappear by themselves, as more and more powerful and inexpensive computers 
appear. At least, this is due to two reasons: 1) complication of tasks put forward by 
both practice and theory; 2) need to carry out a large number of computational 
experiment series for to ensure sufficiently comprehensive study of an object [1]. 

In the mid-1980s, multigrid methods, which history started with pioneering 
works by outstanding Russian mathematicians R.P. Fedorenko [2, 3], N.S. Bakh-
valov [4] and G.P. Astrakhantsev [5], are widely used in solving the application 
problems. In addition, personal computers appeared powerful enough to per-
form scientific and technical calculations. Computing technology gained wide 
access to engineers, physicists, chemists and specialists in other problem areas, 
who were not provided with sufficient training in computational mathematics, 
but faced the necessity to solve application problems requiring large computa-
tional capacity. In this regard, numerous attempts have been made since the  
mid-1980s to develop computational algorithms for programs based on the 
black-box software principle. By this time, disadvantages of the classical multi-
grid method (CMM) were well known and include the following difficulties: 

1) formalizing computations: in fact, CMM is a set of problem-dependent 
components (smoothing procedure, type of coarse grids, method of specifying 
an operator on coarse grids, transfer operators, multigrid cycles, etc.), which 
optimal selection for the boundary value problem to be solved determines the 
optimal convergence rate of the given multigrid method . It is obvious that such 
algorithms could hardly be used in the black-box programs; 

2) parallelizing computations: it is necessary in parallel CMMs to distribute 
different amounts of computational work evenly between the same number  
of independent computers. When smoothing on coarse grids, amount of  
computational work decreases leading to an increase in the cost of data ex-
change [7]. In addition, several independent computers could stand idle, when 
coarse grids are being smoothed [7]. Therefore, efficiency of parallel CMMs is 
relatively low; 
__________________

 However, the multigrid method could not be understood as a fixed algorithm [6]. 
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3) application in solving the boundary value problems in complex geometry 
domains: using CMM implies that a computational grid makes it possible to 
build a hierarchy of coarse grids by enlarging the step. As a rule, these grids are 
difficult to build in domains with complex geometry. 

Requirement to conduct scientific and technical calculations led to intensive 
development of the multigrid methods. As of today, it is rather hard to review 
the entire number of different CMM versions that were proposed, but only two 
of them are the most significant. 

1. Algebraic multigrid methods (AMM). Auxiliary systems of linear algebraic 
equations (SLAE) required to find the correction are built in these methods 
without involving geometric information about the computational grid [7, 8]. 
AMMs are efficient and highly formalized algorithms in solving the SLAEs 
obtained as a result of approximating the linear boundary value problems on 
unstructured grids. AMM is applied in the nonlinear case to solution of the 
SLAE obtained as a result of the discrete boundary value problem global 
linearization. In addition to the need for global linearization of the nonlinear 
algebraic equations initial system, problems are remaining associated with 
building the parallel AMMs. 

 2. Robust Multigrid Technique (RMT). This technology is based on using 
the essential multigrid principle  in a single-grid algorithm to minimize the 
number of problem-dependent components [11, 12]. As applied to numerical 
solution of the boundary value problems for systems of nonlinear partial differ-
ential equations on structured grids, RMT consists of sequential application  
of the Seidel single-grid method with block ordering of unknowns (external iter-
ations) and the Newton method (internal iterations) [10]. Algorithmic complex-
ity of the Seidel method in the linear case is reduced to being close to optimal 
without involving the problem-dependent components. Smoother used in the 
RMT is the generalization of the Vanka iterative method and allows unified so-
lution of a wide class of the boundary value problems, from problems for the 
Poisson equation to problems for the Navier —  Stokes equations [13]. Using 
only a single grid for finding the correction led to problem-independent re-
striction and prolongation operators, uniform loading of independent comput-
ers in parallel execution, but slightly increased computational cost of the RMT 
iteration compared to the classical iteration [11, 12]. Although RMT is a single-
__________________

The essential multigrid principle is to approximate the smooth (long wave-
length) part of the error on coarser grids. The nonsmooth or rough part is reduced 
with a small number (independent of  h) of iterations with a basic iterative method on 
the fine grid [9]. 
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grid algorithm, it is more convenient to represent it as a version of geometric 
multigrid methods (GMM). 

Computational domain geometry determines main features of the algorithm 
for numerical solution of the boundary value problems [11, 12]. Regular grid is 
assumed to be structured, if it generates a hierarchy of coarser grids. Three 
special cases are found in the applications: 

1) globally structured (single-block) grids: hierarchy of the coarse grids  
is built within the entire area. Grids of this type could be built in domains with 
the simplest geometry; 

2) locally structured (multiblock) grids: initial domain is represented as a 
union of intersecting subdomains, and in each of them a structured grid could 
be built generating a hierarchy of coarse grids. Grids of this type are often found 
in various applications; 

3) unstructured grids: it is impossible to build a coarse grid hierarchy over 
the entire domain. In this case, a promising approach to building an effective 
algorithm for solving the nonlinear boundary value problems lies in the 
Auxiliary Space Method, which uses the auxiliary (structured) grid to find the 
correction [14, 15]. 

Purpose of this work is to theoretically study the GMM and RMT 
convergence on locally structured (multiblock) grids within the framework of 
the classical multigrid analysis proposed by W. Hackbusch [16]. 

Purpose of this work is to theoretically study the GMM and RMT 
convergence on locally structured (multiblock) grids within the framework  
of the classical multigrid analysis proposed by W. Hackbusch [16]. 

Smoothing on two-block grids. Let us assume that the  domain  
is representable as the union of subdomains ,k  and in each of them it is 

possible to build a structured grid ,h
kG  but their 

K

1

h h
k

k
G G union is not a 

globally structured grid. Grids of this type will be called the locally structured or 
multiblock grids. 

Next, let us consider the simplest case 2,K  the typical example is shown 
in Fig. 1: the  domain consists of two subdomains 1  and 2, in each  
of them a uniform structured grid is built. 

Let us consider a linear boundary value problem: 

 1 1 1, ,L g x f x x  (1a) 

 2 2 2, .L g x f x x  (1b) 
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Fig. 1. 1 2  domain (a) and locally structured (two-block) grid (b) 
 

Here 1,L 2L  are the linear elliptic differential operators defined in the sub-

domains 1  and 2; g is the required function; 1, ..., ;T
dx x x 1,f 2f  are 

the known functions in 1  and 2;  dR  is the given open domain with 
boundary . The following boundary conditions are set on the  outer 
boundary of the  domain:  

 1 1 1, ,L g x f x x  (1c) 

and conjugation conditions are set on the 2  inner boundary: 

 2 2 2, .L g x f x x  (1d) 

Let us construct in each of the 1  and 2  the 1G  and 2G with steps 1h  
and 2.h  Approximation of the (1а)–(1c) original differential problem on the 

1G  grid leads to a SLAE of the following form: 

 ,uBu Bu b  

where B  is the matrix being a grid analogue of operator 1;L u  is the value  
of the u sought grid function in the 1,G  grid nodes located outside the 1
domain (i.e., in the 2  domain). Using interpolation, let us express Bu  through 
the  function values in the real nodes of grid 2:G  

 .Bu С  
The C  matrix form depends on the grid blocks intersection type (common 
boundary or intersection of blocks), method and order of interpolation (node to 
node, as shown in Fig. 1, or interpolation of different order). Then the resulting 
SLAE takes the following form: 
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 .uBu С b  
Similarly, approximation of the (1b)–(1d) initial differential problem on the 2G  
grid leads to a SLAE of the following form: 
 .Du F b  

Here F is a matrix being the grid analogue of operator 2;L Du  are the terms 
obtained as a result of excluding the  desired grid function values in the 
fictitious nodes of grid 2,G  located outside the 2  domain (i.e., in the 1
domain). 

Error of interblock interpolation in approximations to solution should  
be not less than the error of approximation with operators 1L  and 2 .L  Inter-
block interpolation operator design is determined by the block intersection type, 
required accuracy and smoothness of the differential operator coefficients. 

Thus, approximation of the initial differential problem (1) on the two-
block grid formed by grids 1G and 2,G  leads to a SLAE of the following form: 

 ,uB C u b
D F b

 (2) 

where ,u are discrete analogs of the g  function on grids 1G  and 2.G The B and 
C invertible matrices are the grid analogs of operators 1L  and 2,L  while the C 

and D matrices are generally rectangular; what is more, .TC D   
The C and D ensure interconnection of the grid problems on grids 1G  and 2.G  

Let us consider the simplest iterative method for solving the SLAE (2): 

 1 ,n n n n
B uW u u b Bu C  (3a) 

 1 1 ,n n n n
FW b Du F  (3b) 

where ,BW FW  are the splitting matrices for the B and F matrices. 
Substituting 1nu  from (3a) into (3b), the following is obtained: 

 
1 1 1

1 1 1 11
,

n
B uB B

n B F uF F F B

u S W C W b
W DS S W b W DW b

 (4) 

where 1 1 ;F F BS I W F DW C 1 .B BS I W B  
Equation (4) could be written down in the canonical form: 

 1 1 1 ,n nI W A W b  (5) 
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where 

 
1

1

0 0 0 0
, ,

0
00

, .
0

B

B u

F B

u B C
A

D F B CDW
IW b

W b
W bDW I

 

Classical analysis of the multigrid methods convergence is based on the 
smoothing and approximation properties [16]. Unfortunately, the most stud-
ied is the symmetric case [17]. In the nonsymmetric case, results were obtained 
only for a smoother with parameter [11, 12]. Let us write down (5), as follows: 

 1 1 ,v vS W b  (6) 

where S  is the matrix of smoothing iterations, 

 
11 ;

1
S I W A

 
0  is a certain parameter. 
Proof of smoothing properties in the asymmetric case is based on the fol-

lowing lemmas. 
Lemma 1. Let the 1Q  be performed for the n nQ matrix in a cer-

tain operator norm. Then, the following is correct in the same norm: 

 1
1 1 ,

1
v

v I Q I Q
e v

 v = 1, 2, ..., (7) 

if  3 2 2 3 2 2.  
Proof of Lemma 1 is provided in [11, 12]. Then, the following lemma on 

smoothing properties is correct. 
Lemma 2. Let the 0 1S  and W C A  be performed for the 

(0) n nS  matrix of smoothing iterations in a certain operator norm, and C  
is a certain constant. Then, in the same norm at 3 2 2 3 2 2  the fol-
lowing is correct: 

a)  1 ,vAS C A
e v

 (8) 

b) 0 01 1 cond ,vr C A C A r
e v e v

 (9) 
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where v vr b A is the discrepancy of the v-th approximation to solution
1 .A b  

◀ Let us prove item a). Taking into account (7), it is easy to obtain: 

 1
1 10 0 1 ,

1
vv

vAS I S I S W W
e v

 

whence, (8) follows. 
Let us prove item b). For the exact solution (6), the following is true: 

0 .v vS Whence, multiplying by the A  matrix, it follows: 

 0 .v vr AS  

Further, taking into account (8), it is easy to obtain (9). ▶ 
Nevertheless, traditional approach to proving the smoothing property in 

the nonsymmetric case based on estimates like (7), is rather crude: for exam-
ple, the nonsymmetric Seidel method has the smoothing property, which does 
not follow from (8) for  = 0. In this regard, additional studies are required in 
case 0.  

This approach could easily be generalized in case 2,K  i.e., if the number 
of grid blocks is more than two. 

Multigrid iterations on two-block grids. It is easier to analyze the RMT 
single-grid convergence under an assumption that smoothing is carried out on a 
multigrid structure, i.e., a special sequence of subgrids in the finest grid [11, 12]. 
In this case, multigrid structure is used only for approximating the -modified 
boundary value problem (1) by the finite volume method. Then, the difference 
boundary value problem could be put down in the matrix form: 

 0 0 3, 0,1, ..., ,l l lА c R r l L  (10) 

where lA  is the coefficient matrix, 

 .l l
l

l l

B C
A D F  

, ,l l lB C D  and lF  matrices are having the block-diagonal shape, and the 
number of blocks along the main diagonal is equal to the number of grids 
forming the given grid level 33 , 2,3, 0,1, ..., ,dl d l L  where 3L  is the grid 
level number consisting of the most coarse grids built by tripling the step. Vec-
tors of the unknown lc  and 0r  have the following form: 
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 0 00
0

0 00

ˆˆ
, .

ˆˆ

q qu u ul
l q q

l

c r b B u C
c r

c r b D u F
 

Here 0 ,uc 0c  are corrections to approximation in the û  and ˆ  solution in grids 

1G  and 2;G  q  is the multigrid iteration number. The l subscript indicates belong-
ing to the l grid level, with l = 0 being the finest grid. Restriction operator 

 
1

2
0

0
0

0

0

G
l

l G
l

R
R

R
 

projects the 0r  fastening vector of residuals from the 1G  and 2G  smallest grids 
(l = 0) onto grids of level l = 0, 1, ..., 3 .L  It is obvious that 0 0 .R I  Unlike 
GMM, the RMT contraction operator is not depending on the problem being 
solved, and its design is evidently determined by the additivity property of a 
definite integral with respect to subdomains [11, 12]. 

Smoothing iterations (5) on a multigrid structure generated by the two-
block grid could be written down as: 

 1 1 *0 0 ,l lv v
l l l ll lc S c W R r  (11) 

where 

 11 ,
1l l l l

l
S I W A      1

0 0 0 0
,

0
l

l l
l

ll l l lB

B C
A

D WD F B C
 

 
1

2

0*0 1
0

000
; .

0 0
l

l l

G
lB

l l GlF B l

RIW
W R

D W IW R
 

RMT uses the sawtooth cycle (i.e., the V-cycle without preliminary 
smoothing [9]). After smoothing is carried out on all grids of the l + 1 level, 
transition to finer grids of the  l  level is performed: 

 0 1
1 ,lv

l ll lc P c  

where 1l lP  is the RMT prolongation problem-independent operator (per-
mutation matrix), i.e., prolonged correction value from the adjacent level with 
l + 1 coarser grids is accepted as the initial approximation for smoothing itera-
tions on the l  level grids l [11, 12]. At the 3L  level with the coarsest grids, 
SLAEs (10) are solved exactly in the same way. 
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Hence, it is easy to obtain the following using [11]:  

 0 1 *1 0 0,lv
l l l l l ll lc c P c c d R r  

where 1 0 0l llc A R r  is the exact correction value; ld  is the matrix and  

 1 1 *1 11 .l l l l l l lld A P A d R  (12) 

Examining the difference between correction exact and approximate val-
ues at levels 3 , ...,1, 0,l L  the following is obtained: 

 *
0 0 ),lv

l l l l llc c Q R r A c  

where lQ  is the matrix determined in a recurrent manner, 

 
*0 1 1 3

*0 3

, 0,1, 2, ..., 2;

, 1.

l

l

v
l l l l l ll

l v
l l ll

S d R P Q l L
Q

S d R l L
 (13) 

Correction value after the RMT multigrid iteration would be: 

 0 1 *
0 0 0 0 0 00 0 .v

l l lc c Q r A Q R r A c  

Then, it is easy to obtain a new approximation to solution: 

 01 1 *
0 0 0 0 00 0 ,vq q q

lc Q A A Q R r  (14) 

i.e., the multigrid iteration matrix on a multigrid structure generated by the 
two-block grid is 0 0.Q A  

Classical analysis of the multigrid methods convergence is based on the 
following statements [17]. 

Statement 1. Smoothing property: there is the :lv  function, 
such that 0lv for lv  and 

 , 0,1, ...., 1.lv
l l llА S v A l L  (15) 

Statement 2. Approximation property: for a certain constant 0AC  

 11 1 *
1 11 ,l l l l l A ll ld A P A R C A   0,1..., 1.l L  (16) 

Let us note that from (8) it follows: 

 1 .l
l

l l
v C

e v
 (17) 
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Let us rewrite (14) as: 

 1
0 00 0 ,q qr A Q r  

where 

    00 0 0 0 00
vA Q A S d   

 
3 1 1

1 *1 01
1 0

,k l
L l

v v
k k k k l l l lk k l

l k
A S P A A S d R  (18) 

ld is the matrix given according to (12). 
The following theorem on the RMT convergence is correct. 
Theorem. Supposing that smoothing (15) and approximation (16) properties 

are satisfied, as well as 1 1,llI W A *0 1l RR C  and 3 2 2 l  

3 2 2.  Then, the RMT multigrid iterations converge, and 

 
3 1

0 0 *
0

1 .
L

llA R
l l l

A Q C CC C
e v

 (19) 

◀ From (18) follows the estimate: 

 00 0 0 0 00
vA Q A S d   

 
3 1 1

1 *1 01
1 0

.k l
L l

v v
k k k k l l l lk k l

l k
A S P A A S d R  (20) 

Using smoothing (15), (17) and approximation (16) properties, the following 
is obtained: 

      1 ,l l lv v
l l l l l l Al l

l l
A S d A S d C C

e v
 l = 0, 1, 2, ..., 3 1.L  (21) 

Further, the following inequality is evident: 

 1 1
1 1 ** ,k kv v

k k k k k kk k k kA S P A C A S A C   (22) 

where *C  is a certain constant. Then, estimate (20) taking into account (21) 
and (22) takes the form (19). ▶ 

Theorem proved shows that RMT convergence does not depend on the step 
of a two-block grid, but is determined only by the number of the ,lv  smoothing 
iterations performed on the l level grids. Implementing sufficient number  
of smoothing iterations makes it possible to achieve 0 0 1A Q  (sufficient 
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convergence condition). Results obtained could be easily generalized to other 
GMM versions and to multiblock grids with more than two blocks. 

Let us analyze the RMT labor content in solving a system consisting  of MN  
linear differential equations on the multiblock grid .G  Let the G  grid consist  
of blocks , 1, 2, ..., ,kG k K  and each of them contains the kGN  nodes. Seidel 
method is selected as the smoothing procedure with special block ordering  
of unknowns (Vanka-type smoother [13]), i.e., the system of differential 
equations is solved jointly. Let us assume that computational effort to 
interpolate approximation to solution between the grid blocks is much less than 
computational effort to perform a single iteration according to the Vanka 
method. Labor content of a single iteration by the Vanka method would 
constitute the 2 3(1) ( )G MbW Сn N N  arithmetic operations, where  C  is a certain 
constant; bn  is the number of unknowns in block (1 b G Mn N N ); GN  is the 
number of nodes: 

 
1

.k

K
G G

k
N N  

Then, total labor content of solving the system would constitute 
2 3( ) ( 1)G MbW Сq n N N L  arithmetic operations, where q  is the number  

of multigrid iterations (not depending on G MN N );  is the number of Vanka 
smoothing iterations on a multigrid structure; 

1
1 lg max lg .kG G

k K
L N N  

Then, labor content of solving a system of linear differential equations on the 
G multiblock grid would constitute 2 3( ) lgG M GbW Сq n N N N  arithmetic 
operations. In case of a single equation ( 1MN ) and using the pointwise or-
dering of unknowns, the lgG GW Сq N N  arithmetic operations are ob-
tained. Note that in a 3D case, labor content in the single-grid Seidel method 
with the pointwise ordering of unknowns would constitute 5/3

GW CN  arith-
metic operations. 

Computational experiments. 3D Dirichlet problem for the Poisson equa-
tion was chosen as the model task 

 w f  

in the  single cube. Exact solution is as follows: 

 , , exp .ew x y z x y z  

This solution defines the f  right-hand side and the boundary conditions. 
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Let us construct in the  domain a uniform grid G. Difference analogue  
of the initial boundary value problem obtained by approximation on a seven-
point template could be written in the following matrix form: 

 .h hA b  
The first test is intended for numerical solution of the model boundary 

value problem in the  unit cube (i.e., without dividing a domain into 
subdomains). After each q multigrid iteration, the h hR b A  residual 

vector norm and the max , , he i j k ijkE x y z  numerical solution error are 

calculated. Stopping criterion for the multigrid iterations is taken as 610 .R  
Results of the first test are used to illustrate possible 
decrease in the convergence rate of the RMT multigrid 
iterations caused by dividing the  domain in two 
subdomains. 

The second test is intended for numerical solu-
tion of the model boundary value problem on a two-
block grid built in the  unit cube. Uniform grid G is 
divided in two blocks 1G  and 2G  along plane 0.5.x  
Example of splitting a uniform mesh in the 2D case  
is presented in Fig. 2. After each q multigrid iteration, 
the 21 h hR b A  residual vector norm and the 

21E max , , he i j k ijkijk
x y z  numerical solution error on the 1G  grid were 

calculated, as well as 22 h hR b A  and 22 max , , he i j k ijkijk
E x y z   

were calculated on grid  2.G  Stopping criterion for the multigrid iterations  
is taken as 621 22max ; 10 .R R  Smoothing is carried out alternately  
on the subgrids of grids 1G  and 2.G  

The third test differs from the second only in smoothing: at first, iteration 
smoothing is performed on 1,G  then on 2.G  After each q multigrid  
iteration, the 31 h hR b A  residual vector norm and the 31E  

max , , he i j k ijkijk
x y z   numerical solution error are calculated on the 1G  

grid, as well as 32 h hR b A and 32 max , , he i j k ijkijk
E x y z on grid 

2.G  Stopping criterion for the multigrid iterations is taken as 
631 32max ; 10 .R R  

Fig. 2. 2D two-block 
grid (  — 1G  block;  

 — 2G  block) 
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Seidel method with ordering the unknowns into blocks 3 3 3 was se-
lected as a smoother. Calculations were carried out on grids 101 101 101 

1/100x y zh h h  and 301 301 301 1/ 300 .x y zh h h  
Results of the computational experiment are shown in Fig. 3. With alter-

nating smoothing on the grid blocks (second test), RMT convergence on the 
two-block grid does not practically differ from convergence on the mono-
block grid (first test). Sequential smoothing on each block leads to a slowdown 
in the RMT. 

Fig. 3. RMT convergence on grids 101 101 101  (a) and 301 301 301  (b) 

Conclusion. Results of the performed theoretical analysis and the executed 
computational experiments demonstrate that with alternating smoothing on 
grid blocks the number of multigrid iterations does not depend on either the 
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step size, or on the number of grid blocks. However, there still remain gaps in 
theoretical analysis of the multigrid methods convergence associated, in par-
ticular, with proving the smoothing property for nonsymmetric iterative 
methods using block ordering of the unknowns. 

Translated by K. Zykova 
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