Kaolinite and Illite Based Clay Supporting Nickel: its Synthesis, Characterization, and Catalytic Optimazion in a Lab-Scale Fatty Acid Methyl Ester Production
Авторы: Febiola Fifi, Rahmayeni, Admi, Syukri | Опубликовано: 26.08.2023 |
Опубликовано в выпуске: #4(109)/2023 | |
DOI: 10.18698/1812-3368-2023-4-159-174 | |
Раздел: Химия | Рубрика: Неорганическая химия | |
Ключевые слова: biodiesel, transesterification, WCO, clay, nickel |
Abstract
The increasing world energy needs are not matched by the limited availability of fossil fuels thus the development of clean and sustainable fuels is the right solution. Biodiesel is one of these fuels and can be produced through transesterification reactions of vegetable oils in the presence of a catalyst. Acidic natural clay can be an option because of its large abundance, especially in the Indonesia and is heterogeneous in the solution it catalyzes. In this study, clay samples were obtained from an area in Bukittinggi City, West Sumatra Province, and then combined by wet impregnation with nickel as a catalyst in the transesterification reaction of used cooking oil to produce fatty acid methyl esters. Based on X-Ray diffraction (XRD) analysis, the presence of nickel ions does not affect the diffraction pattern of clay minerals contained in the soil consisting of kaolinite and illite. Measurements with X-Ray fluorescence (XRF) showed that the silicon-aluminum mole ratio also did not show a significant change where before mixing the value was 2.0 and after that it only decreased about 5 % to 1.9. The pore diameter of the catalyst was 3.03 nm known by Surface Area Analyzer (SAA). Several variations have been carried out to optimize the catalytic performance of the nickel supported clay and the best conditions were obtained when the catalyst concentration was 3 wt %, the methanol-oil mole ratio was 6:1, the reaction temperature was 70 °C and the reaction carried out for 3 hours. Under these conditions, the yield of methyl ester produced was 63 %
Syukri et al. thank the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia and LPPM of Universitas Andalas for their financial support with research contract no. 086/E5/PG.02.00.PT/2022 and T/3/UN.16.17/PT/01.03/PPS-PTMEnergi/2022
Please cite this article as:
Febiola F., Rahmayeni, Admi, et al. Kaolinite and illite based clay supporting nickel: its synthesis, characterization, and catalytic optimazion in a lab-scale fatty acid methyl ester production. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 4 (109), pp. 159--174. DOI: https://doi.org/10.18698/1812-3368-2023-4-159-174
Литература
[1] Atabani A.E., Silitonga A.S., Badruddin I.A., et al. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev., 2012, vol. 16, iss. 4, pp. 2070--2093. DOI: https://doi.org/10.1016/j.rser.2012.01.003
[2] Wei G., Liu Z., Zhang L., et al. Catalytic upgrading of Jatropha oil biodiesel by partial hydrogenation using Raney-Ni as catalyst under microwave heating. Energy Convers. Manag., 2018, vol. 163, pp. 208--218. DOI: https://doi.org/10.1016/j.enconman.2018.02.060
[3] Pooja S., Anbarasan B., Ponnusami V., et al. Efficient production and optimization of biodiesel from kapok (Ceiba pentandra) oil by lipase transesterification process: addressing positive environmental impact. Renew. Energy, 2021, vol. 165, part 1, pp. 619--631. DOI: https://doi.org/10.1016/j.renene.2020.11.053
[4] Falowo O.A., Apanisile O.E., Aladelusi A.O., et al. Influence of nature of catalyst on biodiesel synthesis via irradiation-aided transesterification of waste cooking oil-honne seed oil blend: modeling and optimization by Taguchi design method. Energy Convers. Manag. X, 2021, vol. 12, art. 100119. DOI: https://doi.org/10.1016/j.ecmx.2021.100119
[5] Bin Mohiddin M.N., Tan Y.H., Seow Y.X., et al. Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: a review. J. Ind. Eng. Chem., 2021, vol. 98, pp. 60--81. DOI: https://doi.org/10.1016/j.jiec.2021.03.036
[6] Lin Y.S., Lin H.P. Study on the spray characteristics of methyl esters from waste cooking oil at elevated temperature. Renew. Energy, 2010, vol. 35, iss. 9, pp. 1900--1907. DOI: https://doi.org/10.1016/j.renene.2010.01.014
[7] Khan I.W., Naeem A., Farooq M., et al. Catalytic conversion of spent frying oil into biodiesel over raw and 12-tungsto-phosphoric acid modified clay. Renew. Energy, 2020, vol. 155, pp. 181--188. DOI: https://doi.org/10.1016/j.renene.2020.03.123
[8] Abukhadra M.R., Sayed M.A. K+ trapped kaolinite (Kaol/K+) as low cost and eco-friendly basic heterogeneous catalyst in the transesterification of commercial waste cooking oil into biodiesel. Energy Convers. Manag., 2018, vol. 177, pp. 468--476. DOI: https://doi.org/10.1016/j.enconman.2018.09.083
[9] Alves H.J., da Rocha A.M., Monteiro M.R., et al. Treatment of clay with KF: new solid catalyst for biodiesel production. Appl. Clay Sci., 2014, vol. 91--92, pp. 98--104. DOI: https://doi.org/10.1016/j.clay.2014.02.004
[10] Munir M., Ahmad M., Mubashir M., et al. A practical approach for synthesis of biodiesel via non-edible seeds oils using trimetallic based montmorillonite nano-catalyst. Bioresour. Technol., 2021, vol. 328, art. 124859. DOI: https://doi.org/10.1016/j.biortech.2021.124859
[11] Inayat A., Nassef A.M., Rezk H., et al. Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30. Sci. Total Environ., 2019, vol. 666, pp. 821--827. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.321
[12] Ningsih L., Deska A., Arief S., et al. Enrichment of Sawahlunto clay with cation Ca2+ and Cu2+ and preliminary test of its catalytic activity in CPO transesterification reaction. Aceh Int. J. Sci. Technol., 2020, vol. 9, no. 3, pp. 187--196. DOI: https://doi.org/10.13170/aijst.9.3.17944
[13] Syukri S., Ferdian F., Rilda Y., et al. Synthesis of graphene oxide enriched natural kaolinite clay and its application for biodiesel production. Int. J. Renew. Energy Dev., 2021, vol. 10, no. 2, pp. 307--315. DOI: https://doi.org/10.14710/ijred.2021.32915
[14] Lam M.K., Lee K.T., Mohamed A.R. Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: an optimization study. Appl. Catal. B Environ., 2009, vol. 93, iss. 1-2, pp. 134--139. DOI: https://doi.org/10.1016/j.apcatb.2009.09.022
[15] Syukri, Febiola Fifi, Rahmayeni, et al. Effect of thermal treatment and nickel-salt modification on the catalytic performance of the illite-kaolinite clay from Bukittinggi of West Sumatra in palm oil transesterification. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 2 (101), pp. 125--136. DOI: https://doi.org/10.18698/1812-3368-2022-2-125-136
[16] Kamaronzaman M.F.F., Kahar H., Hassan N., et al. Biodiesel production from waste cooking oil using nickel doped onto eggshell catalyst. Mater. Today Proc., 2020, vol. 31, part 1, pp. 342--346. DOI: https://doi.org/10.1016/j.matpr.2020.06.159
[17] Gonggo S.T., Edyanti F. Physicochemical characterization of clay minerals as a raw material of ceramic industry in Desa Lembah Bomban Kec. Bolano Lambunu Kab. Parigi Moutong., Akad. Kim., 2013, vol. 2, no. 2, pp. 105--113.
[18] Suyanto T., Kismolo E. Karakterisasi Kapasitas Tukar Kation Lempung Kasongan untuk Pengolahan Limbah Radioaktif Cair. Peneltian dan Pengelolaan Preengkat Nuklir, 2008, pp. 236--240.
[19] Handayani S. Kualitas Batu Bata Merah Dengan Penambahan Serbuk Gergaji. J. Tek. Sipil dan Perenc., 2010, vol. 12, no. 1, pp. 41--50. DOI: https://doi.org/10.15294/jtsp.v12i1.1339
[20] Alaa S., Kurniawidi D.W. Pengaruh Suhu Pemanasan Lempung terhadap Sifat Mekanis Gerabah. Kuanta, 2015, vol. 1, no. 1, pp. 32--35.
[21] Utami D.N. Kajian Jenis Mineralogi Lempung Dan Implikasinya Dengan Gerakan Tanah. J. Alami J. Teknol. Reduksi Risiko Bencana., 2018, vol. 2, no. 2, p. 89.
[22] Bijang C.M., Sekewael S.J., Koritelu J.A. Aktivasi Lempung dengan Basa dan Aplikasinya sebagai Penukar Kation untuk Mengurangi Konsentrasi Ion Mg2+ dan Ca2+ dalam Air Sumur. Ind. J. Chem. Res., 2014, vol. 1, pp. 93--98.
[23] Rahmaniah R., Reskywijaya R., Wahyuni A.S., et al. Analisis Mineral Tanah Rawan Longsor Menggunakan X-Ray Diffraction Di Desa Sawaru Kabupaten Maros. Jambura Geosci. Rev., 2020, vol. 2, no. 1, pp. 41--49. DOI: https://doi.org/10.34312/jgeosrev.v2i1.2639
[24] Noer Aini L., Mulyono M., Hanudin E. Mineral Mudah Lapuk Material Piroklastik Merapi dan Potensi Keharaannya Bagi Tanaman. Planta Trop. J. Agro Sci., 2016, vol. 4, no. 2, pp. 84--94. DOI: https://doi.org/10.18196/pt.2016.060.84-94
[25] Aid A., Andrei R.D., Amokrane S., et al. Ni-exchanged cationic clays as novel heterogeneous catalysts for selective ethylene oligomerization. Appl. Clay Sci., 2017, vol. 146, pp. 432--438. DOI: https://doi.org/10.1016/j.clay.2017.06.034
[26] Ritonga P.S. Kajian Spektra IR dan AAS Lempung Terpilar-Fe. Phot. J. Sain dan Kesehat., 2012, vol. 3, no. 1, pp. 37--44. DOI: https://doi.org/10.37859/jp.v3i1.147
[27] Karelius K. Extraction and characterization natural clay of central Kalimantan as one of alternatives additives of geopolymer concrete. Balanga, 2017, vol. 5, no. 2, pp. 1--10.
[28] Zviagina B.B., Drits V.A., Dorzhieva O.V. Distinguishing features and identification criteria for K-dioctahedral 1 M micas (illite-aluminoceladonite and illite-glauconite-celadonite series) from middle-infrared spectroscopy data. Minerals, 2020, vol. 10, iss. 2, art. 153. DOI: https://doi.org/10.3390/min10020153
[29] Olutoye M.A., Wong S.W., Chin L.H., et al. Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renew. Energy, 2016, vol. 86, pp. 392--398. DOI: https://doi.org/10.1016/j.renene.2015.08.016
[30] Zaki M., Husin H., M.T., et al. Transesterifikasi Minyak Biji Buta-Buta menjadi Biodiesel pada Katalis Heterogen Kalsium Oksida (CaO). J. Rekayasa Kim. Lingkung, 2019, vol. 14, no. 1, pp. 36--43. DOI: https://doi.org/10.23955/rkl.v14i1.13495
[31] Zabeti M., Wan Daud W.M.A., Aroua M.K. Activity of solid catalysts for biodiesel production: a review. Fuel Process. Technol., 2009, vol. 90, iss. 6, pp. 770--777. DOI: https://doi.org/10.1016/j.fuproc.2009.03.010
[32] Ridho M.R., Wirawan I.K.G., Ghurri A. Pengaruh Variasi Temperatur dan Putaran Pa d a Proses Partial Hydrogenation Biodiesel Minyak Jelantah Terhadap Stabilitas Oksidasi. J. Ilm. Tek. Desain Mek., 2020, vol. 9, pp. 3--8.