|

Methods for Synthesis of Nickel Nanoparticle Properties from Pregnant Leach Solution of Laterite

Авторы: Bahfie F., Mubarok M.Z., Talega Z., Sumardi S., Prasetyo E., Nurjaman F., Herlina U., Afif F.A., Oediyani S., Manaf A., Adi W.A., Subagja R., Susanti D., Noviyanto A., Rakesh B. Опубликовано: 17.12.2023
Опубликовано в выпуске: #6(111)/2023  
DOI: 10.18698/1812-3368-2023-6-111-133

 
Раздел: Химия | Рубрика: Органическая химия  
Ключевые слова: synthesis, nickel oxide, nanoparticle, sol-gel, polyethylene glycol

Abstract

In recent years, the synthesis of nanoparticles has been primarily focused on metal oxides because of their large surface area and good adsorption properties. The metal oxide commonly used in industry is nickel oxide (NiO) because it can be used for various applications, such as electrodes, catalysts, and sensors, and in multiple applications ranging from electrochemical detection to energy storage and environ-mental remediation. The method in the process of synthesizing nickel oxide nanoparticles which are considered to produce optimal products is the sol-gel method. The sol-gel method is a chemical method for synthesizing nanostructures. The process starts from precursor molecules dissolved in water or alco-hol and then converted into gels through heating and stirring with hydrolysis or alcoholysis. Then the resulting gel is dried by the appropriate method depending on the desired properties and application. The sol-gel method was chosen because it produces products with high purity without needing a lot of energy. Therefore, this review paper will discuss research on the traditional and green synthesis of nickel oxide nanoparticles using the sol-gel method with the precursor used, namely polyethylene glycol, as an agglomeration barrier, including possible improvements and weaknesses of this method

The authors would like to acknowledge the Deputi Bidang Fasilitasi Riset dan Inovasi-Badan Riset dan Inovasi Nasional Indonesia (RIIM G3) with contract number 12/II.7/HK/2023 and Collaboration with Department of Science and Technology (DST), Government of India for funding under ASEAN --- India Research and Training Fellowship Scheme with application no. RTF/2022/000219 and the Ministry of Education, Culture, Research, and Technology --- Directorate of Higher Education, Research, and Technology under research project KDN 2023 and contract no NKB-1129/UN2.RST/HKP.05.00/2023 for providing funds. The authors gratefully acknowledge the support of the Research Center of Mining Technology National --- Research and Innovation Agency of Indonesia and Institute of Technology Bandung for the research facilities

Please cite this article as:

Bahfie F., Mubarok M.Z., Talega Z., et al. Methods for synthesis of nickel nanoparticle properties from pregnant leach solution of laterite. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 6 (111), pp. 111--133. DOI: https://doi.org/10.18698/1812-3368-2023-6-111-133

Литература

[1] Chandra S., Kumar A., Tomar P.K. Synthesis of Ni nanoparticles and their characterizations. J. Saudi Chem. Soc., 2014, vol. 18, iss. 5, pp. 437--442. DOI: https://doi.org/10.1016/j.jscs.2011.09.008

[2] Shamim A., Ahmad Z., Mahmood S., et al. Synthesis of nickel nanoparticles by sol-gel method and their characterization. Open J. Chem., 2019, vol. 2, no. 1, pp. 16--20. DOI: https://doi.org/10.30538/psrp-ojc2019.0009

[3] Wanta K.C., Putra F.D., Susanti R.F., et al. The effect of degree of acidity (pH) on metal ion selective hydroxide precipitation process from spent catalyst extract solution. J. Rek. Pros., 2019, vol. 13, no. 2, pp. 94--105. DOI: https://doi.org/10.22146/jrekpros.44007

[4] Abid N., Khan A.M., Shujait S., et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv. Colloid Interface Sci., 2022, vol. 300, art. 102597. DOI: https://doi.org/10.1016/j.cis.2021.102597

[5] Singh J.P., Kumar M., Sharmaet A., et al. Bottom-up and top-down approaches for MgO. IntechOpen, 2020. DOI: https://doi.org/10.5772/intechopen.91182

[6] Bahfie F., Manaf A., Astuti W., et al. From nickel ore to Ni nanoparticles in the extraction process: properties and application. Progress in Physics of Metals, 2023, vol. 24, no. 1, pp. 173--196. DOI: https://doi.org/10.15407/ufm.24.01.173

[7] Bokov D., Jalil A.T., Chupradit S., et al. Nanomaterial by sol-gel method: synthesis and application. Adv. Mater. Sci. Eng., 2021, vol. 2021, art. 5102014. DOI: https://doi.org/10.1155/2021/5102014

[8] Kayani Z.N., Butt M.Z., Riaz S., et al. Synthesis of NiO nanoparticles by sol-gel technique. Mater. Sci.-Poland, 2018, vol. 36, iss. 4, pp. 547--552. DOI: https://doi.org/10.2478/msp-2018-0088

[9] Ningsih S.K.W. Manufacture of nickel oxide nanoparticles by the sol-gel method. Journal Science, 2016, vol. 7, no. 6, pp. 1--5.

[10] Pooyandeh S., Shahidi S., Khajehnezhad A., et al. Synthesizing and deposition of nickel oxide nanoparticles on glass mat using sol-gel method (morphological and magnetic properties). J. Text. Inst., 2021, vol. 112, iss. 6, pp. 887--895. DOI: https://doi.org/10.1080/00405000.2020.1785606

[11] Mateos D., Valdez B., Castillo J.R., et al. Synthesis of high purity nickel oxide by a modified sol-gel method. Ceram. Int., 2019, vol. 45, iss. 9, pp. 11403--11407. DOI: https://doi.org/10.1016/j.ceramint.2019.03.005

[12] Szindler M., Szindler M.M., Dobrzanski L.A., et al. NiO Nanoparticles prepared by the sol-gel method for a dye sensitized solar cell applications. Arch. Mater. Sci. Eng., 2018, vol. 92, no. 1, pp. 15--21. DOI: http://dx.doi.org/10.5604/01.3001.0012.5507

[13] Jasrotia R., Puri P., Verma A., et al. Magnetic and electrical traits of sol-gel synthesized Ni-Cu-Zn nanosized spinel ferrites for multi-layer chip inductors application. J. Solid State Chem., 2020, vol. 289, art. 121462. DOI: https://doi.org/10.1016/j.jssc.2020.121462

[14] Rheima A.M., Anber A.A., Shakir A.A., et al. Novel method to synthesis nickel oxide nanoparticles for antibacterial activity. IJPR, 2020, vol. 20, iss. 3, pp. 51--55. DOI: https://doi.org/10.47176/ijpr.20.3.38771

[15] Zakaria N., Osman N. Effect of pH value on the synthesis of NiO nanoparticles and microstructure of NiO based composite anode. Solid State Phenom., 2021, vol. 317, pp. 447--453. DOI: https://doi.org/10.4028/www.scientific.net/SSP.317.447

[16] Teoh L.G., Li K.-D. Synthesis and characterization of NiO nanoparticles by sol-gel method. Mater. Trans., 2012, vol. 53, iss. 12, pp. 2135--2140. DOI: https://doi.org/10.2320/matertrans.m2012244

[17] Kim J.K. PEG-assisted sol-gel synthesis of compact nickel oxide hole-selective layer with modified interfacial properties for organic solar cells. Polymers, 2019, vol. 11, iss. 1, art. 120. DOI: https://doi.org/doi:10.3390/polym11010120

[18] Zorkipli N.N., Kaus N.H.M., Mohamad A.A. Synthesis of NiO nanoparticles through sol-gel method. Procedia Chem., 2016, vol. 19, pp. 626--631. DOI: https://doi.org/10.1016/j.proche.2016.03.062

[19] Kooti M., Jorfi M. Synthesis and characterization of nanosized NiO2 and NiO using Triton® X-100. Cent. Eur. J. Chem., 2009, vol. 7, iss. 1, pp. 155--158. DOI: https://doi.org/10.2478/s11532-008-0077-5

[20] Prabhu Y.T, Rao K., Kumar V., et al. Synthesis of ZnO nanoparticles by a novel surfactant assisted amine combustion method. Adv. Nanopart, 2013, vol. 2, no. 1, pp. 45--50. DOI: https://doi.org/10.4236/anp.2013.21009

[21] Ayoub I., Kumar V., Abolhassani R., et al. Advances in ZnO: manipulation of defects for enhancing their technological potentials. Nanotechnol. Rev., 2022, vol. 11, iss. 1, pp. 575--619. DOI: https://doi.org/10.1515/ntrev-2022-0035

[22] Vijayadarshan P., Mohan T., Viswanath J.V., et al. Large scale synthesis of nickel oxide (NiO) by self-propagated combustion reaction. MSRI, 2017, vol. 14, no. 1, pp. 37--42. DOI: http://dx.doi.org/10.13005/msri/140106

[23] Faradis R. Synthesis and characterization of zinc oxide (ZnO) photocatalyst material using sonication method for methylene blue degradation. State Islamic University of Maulana Malik Ibrahim Malang, 2017.

[24] Anugraini A. The effect of sonication time on the characteristics of cellulose. Equator Chemical Journal, 2018, vol. 7, no. 3, pp. 18--26.

[25] Januarty M., Yuniarti Y. Purification of silica sand with the sonication method. Sepuluh Nopember Institute of Technology, 2015.

[26] Rusdiana I.A., Hambali E., Rahayuningsih M. The effect of sonication on the physical properties of herbicide formulas added with diethanolamide surfactant. Agroradix, 2018, vol. 1, no. 2, pp. 34--41.

[27] Astuti H.G.F. The effect of temperature on the sonication process on particle morphology and crystallinity of Fe3O4 nanoparticles. JFU, 2015, vol. 4, no. 1, pp. 1--5.

[28] Neppolian B., Wang Q., Jung H., et al. Ultrasonic-assisted sol-gel method of preparation of TiO2 nanoparticles: characterization, properties and 4-chlorophenol removal application. Ultrason. Sonochem., 2008, vol. 15, iss. 4, pp. 649--658. DOI: https://doi.org/10.1016/j.ultsonch.2007.09.014

[29] Sharma N., Jha R. Sonochemical synthesis of zinc oxide nanoparticles. Adv. Mater. Proc., 2017, vol. 2, iss. 5, pp. 299--303. DOI: https://doi.org/10.5185/amp/2017.504

[30] Firisa S.G., Muleta G.G., Yimer A.A. Synthesis of nickel oxide nanoparticles and copper-doped nickel oxide nanocomposites using Phytolacca dodecandra L’herit leaf extract and evaluation of its antioxidant and photocatalytic activities. ACS Omega, 2022, vol. 7, iss. 49, pp. 44720--44732. DOI: https://doi.org/10.1021/acsomega.2c04042

[31] Pandian C.J., Palanivel R., Dhananasekaran S. Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin. J. Chem. Eng., 2015, vol. 23, iss. 8, pp. 1307--1315. DOI: https://doi.org/doi:10.1016/j.cjche.2015.05.012

[32] Alagiri M., Ponnusamy S., Muthamizhchelvan C. Synthesis and characterization of NiO nanoparticles by sol-gel method. J. Mater. Sci.: Mater. Electron., 2012, vol. 23,pp. 728--732. DOI: https://doi.org/10.1007/s10854-011-0479-6

[33] Ahghari M.R., Soltaninejad V., Maleki A. Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Sci. Rep., 2020, vol. 10, art. 12627. DOI: https://doi.org/10.1038/s41598-020-69679-4

[34] Ghazal S., Akbari A., Hosseini H.A., et al. Sol-gel biosynthesis of nickel oxide nanoparticles using Cydonia oblonga extract and evaluation of their cytotoxicity and photocatalytic activities. J. Mol. Struct., 2020, vol. 1217, art. 128378. DOI: https://doi.org/10.1016/j.molstruc.2020.128378

[35] Ezhilarasi A.A., Vijaya J.J., Kaviyarasu K., et al. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol. B, Biol., 2016, vol. 164, pp. 352--360. DOI: https://doi.org/10.1016/j.jphotobiol.2016.10.003

[36] Khalil Ali T., Ovais M., Ullah I., et al. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Nanomed. Biotechnol., 2017, vol. 46, iss. 4, pp. 838--852. DOI: https://doi.org/10.1080/21691401.2017.1345928

[37] Shwetha U.R., Rajith Kumar C.R., Kiran M.S., et al. Biogenic synthesis of NiO nanoparticles using Areca catechu leaf extract and their antidiabetic and cytotoxic effects. Molecules, 2021, vol. 26, iss. 9, art. 2448. DOI: https://doi.org/10.3390/molecules26092448

[38] Huang Y., Zhu C., Xie R., et al. Green synthesis of nickel nanoparticles using Fumaria officinalis as a novel chemotherapeutic drug for the treatment of ovarian cancer. J. Exp. Nanosci., 2021, vol. 16, iss. 1, pp. 368--381. DOI: https://doi.org/10.1080/17458080.2021.1975037

[39] Thema F.T., Manikandan E., Gurib-Fakim A., et al. Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. J. Alloys Compd., 2016, vol. 657, pp. 655--661. DOI: https://doi.org/10.1016/j.jallcom.2015.09.227

[40] Sabouri Z., Rangrazi A., Amiri M.S., et al. Green synthesis of nickel oxide nanoparticles using Salvia hispanica L. (chia) seeds extract and studies of their photocatalytic activity and cytotoxicity effects. Bioprocess Biosyst. Eng., 2021, vol. 44, pp. 2407--2415. DOI: https://doi.org/10.1007/s00449-021-02613-8

[41] Boudiaf M., Messai Y., Bentouhami E., et al. Green synthesis of NiO nanoparticles using Nigella sativa extract and their enhanced electro-catalytic activity for the 4-nitro-phenol degradation. J. Phys. Chem. Solids, 2021, vol. 153, art. 110020. DOI: https://doi.org/10.1016/j.jpcs.2021.110020

[42] Uddin S., Safdar L.B., Anwar S., et al. Green synthesis of nickel oxide nanoparticles from Berberis balochistanica stem for investigating bioactivities. Molecules, 2021, vol. 26, iss. 6, art. 1548. DOI: https://doi.org/10.3390/molecules26061548

[43] Bhoye M., Pansambal S., Basnet P., et al. Eco-friendly synthesis of Ni/NiO nanoparticles using Gymnema sylvestre leaves extract for antifungal activity. J. Compos. Sci., 2023, vol. 7, iss. 3, art. 105. DOI: https://doi.org/10.3390/jcs7030105

[44] Kalita C., Sarkar R.D., Verma V., et al. Bayesian modeling coherenced green synthesis of NiO nanoparticles using Camellia sinensis for efficient antimicrobial activity. BioNanoScience, 2021, vol. 11, no. 1, pp. 825--837. DOI: https://doi.org/10.1007/s12668-021-00882x

[45] Iqbal J., Abbasi B.A., Mahmood T., et al. Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl. Organomet. Chem., 2019, vol. 33, no. 8, art. e4950. DOI: https://doi.org/10.1002/aoc.4950

[46] Rekha R., Gurumoorthy G., Paulraj P. Photocatalytic degradation of organic dye using green synthesized Mn2O3 nanoparticles. SJST, 2022, vol. 44, no. 6, pp. 1442--1449.

[47] Ningsih S.K.W. Synthesis and characterization of NiO nanopowder by sol-gel process. AIP Conf. Proc., 2015, vol. 1677, art. 070027. DOI: https://doi.org/10.1063/1.4930731

[48] Reiser J.T., Ryan J.V., Wall N.A. Sol-gel synthesis and characterization of gels with compositions relevant to hydrated glass alteration layers. ACS Omega, 2019, vol. 4, iss. 15, pp. 16257--16269. DOI: https://doi.org/10.1021/acsomega.9b00491

[49] Modan E.M., Plaiasu A.G. Advantages and disadvantages of chemical methods in the elaboration of nanomaterials. The Annals of "Dunarea de Jos" University of Galati. Fascicle IX, Metallurgy and Materials Science, 2020, vol. 43, no. 1, art. 53. DOI: https://doi.org/10.35219/mms.2020.1.08

[50] Kusumaningrum D., Hadisantoso E.P., Sudiarti T. Effect of surfactant on synthesis of nickel(II) oxide (NiO) by precipitation method for photocatalytic treatment of methylene blue. GDCS, 2021, vol. 7, pp. 38--50.