Real Power Loss Reduction by Enhanced Trailblazer Optimization Algorithm
Авторы: Kanagasabai L. | Опубликовано: 23.06.2021 |
Опубликовано в выпуске: #3(96)/2021 | |
DOI: 10.18698/1812-3368-2021-3-77-93 | |
Раздел: Математика и механика | Рубрика: Вычислительная математика | |
Ключевые слова: optimal reactive power, Transmission loss, Teaching, Learning, Trailblazer |
In this paper Teaching learning based Trailblazer optimization algorithm (TLBOTO) is used for solving the power loss lessening problem. Trailblazer optimization algorithm (TOA) is alienated into dual phases for exploration: trailblazer phase and adherent phase. Both phases epitomize the exploration and exploitation phase of TOA correspondingly. Nevertheless, in order to avoid the solution falling in local optimum in this paper Teaching-learning-based optimization (TLBO) is integrated with TOA approach. Learning segment of the TLBO algorithm is added to the adherent phase. Proposed Teaching learning based Trailblazer optimization algorithm (TLBOTO) augment exploration capability of the algorithm and upsurge the convergence speed. Algorithm's exploration competences enhanced by linking the teaching phase and learning. Exploration segment of the trailblazer algorithm identifies the zone with the pre-eminent solution. Subsequently inducing the teaching process, the trailblazer performs as a teacher to teach additional entities and engender a new-fangled entity. The new-fangled unit is equated with the trailblazer, and with reference to the greedy selection norm, the optimal one is designated as the trailblazer to endure exploration. The location of trailblazer is modernized. Legitimacy of the Teaching learning based Trailblazer optimization algorithm (TLBOTO) is substantiated in IEEE 30 bus system (with and devoid of L-index). Actual power loss lessening is reached. Proportion of actual power loss lessening is augmented
Литература
[1] Lee K.Y., Park Y.M., Ortiz J.L. Fuel-cost minimisation for both real and reactive-power dispatches. IEE Proc. C, 1984, vol. 131, iss. 3, pp. 85--93. DOI: https://doi.org/10.1049/ip-c.1984.0012
[2] Deeb N.I., Shahidehpour S.M. An efficient technique for reactive power dispatch using a revised linear programming approach. Electr. Power Syst. Res., 1998, vol. 15, iss. 2, pp. 121--134. DOI: https://doi.org/10.1016/0378-7796(88)90016-8
[3] Bjelogrlic M.R., Calovic M.S., Ristanovic P. Application of Newton’s optimal power flow in voltage/reactive power control. IEEE Trans. Power Syst., 1990, vol. 5, iss. 4, pp. 1447--1454. DOI: https://doi.org/10.1109/59.99399
[4] Granville S. Optimal reactive dispatch through interior point methods. IEEE Trans. Power Syst., 1994, vol. 9, iss. 1, pp. 136--146. DOI: http://dx.doi.org/10.1109/59.317548
[5] Grudinin N. Reactive power optimization using successive quadratic programming method. IEEE Trans. Power Syst., 1998, vol. 13, iss. 4, pp. 1219--1225. DOI: http://dx.doi.org/10.1109/59.736232
[6] Khan I., Li Z., Xu Y., et al. Distributed control algorithm for optimal reactive power control in power grids. Int. J. Electr. Power Energy Syst., 2016, vol. 83, pp. 505--513. DOI: https://doi.org/10.1016/j.ijepes.2016.04.004
[7] Li J., Wang N., Zhou D., et al. Optimal reactive power dispatch of permanent magnet synchronous generator-based wind farm considering levelised production cost minimisation. Renew. Energy, 2020, vol. 145, pp. 1--12. DOI: https://doi.org/10.1016/j.renene.2019.06.014
[8] Sahli Z., Hamouda A., Bekrar A., et al. Hybrid PSO-tabu search for the optimal reactive power dispatch problem. Proc. IECON, 2014. DOI: https://doi.org/10.1109/IECON.2014.7049024
[9] Mouassa S., Bouktir T., Salhi A. Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Eng. Sci. Technol. an Int. J., 2017, vol. 20, iss. 3, pp. 885--895. DOI: https://doi.org/10.1016/j.jestch.2017.03.006
[10] Mandal B., Roy P.K. Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. Int. J. Electr. Power Energy Syst., 2013, vol. 53, pp. 123--134. DOI: https://doi.org/10.1016/j.ijepes.2013.04.011
[11] Khazali H., Kalantar M. Optimal reactive power dispatch based on harmony search algorithm. Int. J. Electr. Power Energy Syst., 2011, vol. 33, iss. 3, pp. 684--692. DOI: https://doi.org/10.1016/j.ijepes.2010.11.018
[12] Tran H.V., Pham T.V., Pham L.H., et al. Finding optimal reactive power dispatch solutions by using a novel improved stochastic fractal search optimization algorithm. TELKOMNIKA, 2019, vol. 17, no. 5, pp. 2517--2526. DOI: http://dx.doi.org/10.12928/telkomnika.v17i5.10767
[13] Polprasert J., Ongsakul W., Dieu V.N. Optimal reactive power dispatch using improved pseudo-gradient search particle swarm optimization. Electr. Power Compon. Syst., 2016, vol. 44, iss. 5, pp. 518--532. DOI: https://doi.org/10.1080/15325008.2015.1112449
[14] Duong T.L., Duong M.Q., Phan V.-D., et al. Optimal reactive power flow for large-scale power systems using an effective metaheuristic algorithm. J. Electr. Comput. Eng., 2020, vol. 2020, art. 6382507. DOI: https://doi.org/10.1155/2020/6382507
[15] Muhammad Y., Khan R., Raja M.A.Z., et al. Solution of optimal reactive power dispatch with FACTS devices: a survey. Energy Rep., 2020, vol. 6, pp. 2211--2229. DOI: https://doi.org/10.1016/j.egyr.2020.07.030
[16] Rao R., Savsani V.J., Vakharia D.P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des., 2011, vol. 43, iss. 3, pp. 303--315. DOI: https://doi.org/10.1016/j.cad.2010.12.015
[17] Balakrishnan N. A synthesis of exact inferential results for exponential step-stress models and associated optimal accelerated life-tests. Metrika, 2009, vol. 69, no. 2-3, pp. 351--396. DOI: https://doi.org/10.1007/s00184-008-0221-4
[18] Illinois Center for a Smarter Electric Grid (ICSEG): website. Available at: https://icseg.iti.illinois.edu (accessed: 25.02.2019).
[19] Hussain A.N., Abdullah A.A., Neda O.M. Modified particle swarm optimization for solution of reactive power dispatch. Res. J. Appl. Sci. Eng. Technol., 2018, vol. 15, no. 8, pp. 316--327. DOI: http://dx.doi.org/10.19026/rjaset.15.5917
[20] Pandya S., Roy R. Particle swarm optimization based optimal reactive power dispatch. Proc. IEEE ICECCT, 2015. DOI: https://doi.org/10.1109/ICECCT.2015.7225981
[21] Dai C., Chen W., Zhu Y., et al. Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst., 2009, vol. 24, iss. 3, pp. 1218--1231. DOI: https://doi.org/10.1109/TPWRS.2009.2021226
[22] Subbaraj P., Rajnarayan P.N. Optimal reactive power dispatch using self-adaptive real coded Genetic algorithm. Electr. Power Syst. Res., 2009, vol. 79, iss. 2, pp. 374--438. DOI: https://doi.org/10.1016/j.epsr.2008.07.008
[23] Vishnu M., Sunil K.T.K. An improved solution for reactive power dispatch problem using diversity-enhanced particle swarm optimization. Energies, 2020, vol. 13, no. 11, art. 2862. DOI: https://doi.org/10.3390/en13112862