Об асимптотической классификации решений нелинейных уравнений третьего и четвертого порядков со степенной нелинейностью
Авторы: Асташова И.В. | Опубликовано: 15.04.2015 |
Опубликовано в выпуске: #2(59)/2015 | |
DOI: 10.18698/1812-3368-2015-2-3-25 | |
Раздел: Математика и механика | Рубрика: Дифференциальные уравнения и математическая физика | |
Ключевые слова: нелинейное дифференциальное уравнение высокого порядка, асимптотическое поведение решений, качественные свойства, асимптотическая классификация решений |
Исследовано асимптотическое поведение всех решений нелинейных дифференциальных уравнений типа Эмдена - Фаулера третьего и четвертого порядков. Приведены ранее полученные автором настоящей статьи результаты. Уравнение n-го порядка сведено к системе на (п - 1)-мерной сфере. С помощью исследования асимптотического поведения всех возможных траекторий системы получена асимптотическая классификация решений исходного уравнения.
Литература
[1] Emden R. Gaskugeln. Leipzig, 1907.
[2] Zeldovich Ya.B., Blinnikov S.I., Shakura N.I. Physical foundations of the structure and evolution of stars. Moscow, MSU Publ., 1981.
[3] Bellman R. Stability Theory of Solutions of Differential Equations (Russ. translation), Moscow, 1954.
[4] Sansone J. Ordinary differential equations, vol. 2. Moscow, InLit Publ., 1954.
[5] Kiguradze I.T., Chanturia T.A. Asymptotic properties of solutions of nonautonomous ordinary differential equations. Dordrecht-Boston-London Kluwer, Academic Publishers, 1993.
[6] Astashova I.V., Filinovskii A.V., Kondratiev V.A., Muravei L.A. Some problems in the qualitative theory of differential equations. J. of Natural Geometry. Jnan Bhawan. London, 2003, vol. 23, no. 1-2, pp. 1-126.
[7] Astashova I.V. Qualitative properties of solutions to quasilinear ordinary differential equations. In: Astashova I.V. (ed.) Qualitative Properties of Solutions to Differential Equations and Related Topics of Spectral Analysis: scientific edition. Moscow, UNITY-DANA Publ., 2012, pp. 22-290.
[8] Atkinson F.V. On second order nonlinear oscillations. Pac. J. Math., 1955, vol. 5, no. 1, pp. 643-647.
[9] Kiguradze I.T. Asymptotic properties of solutions of a nonlinear Emden-Fowler type differential equation. Izv. Akad. Nauk SSSR, Ser. Mat. [Math. USSR-Izvestija], 1965, vol. 29, no. 5, pp. 965-986 (in Russ.).
[10] Waltman P. Oscillation criteria for third order nonlinear differential equations. Pac. J. Math., 1966, vol. 18, pp. 385-389.
[11] Kiguradze I.T. On monotone solutions of nonlinear ordinary nth-order differential equations. Izv. Akad. Nauk SSSR, Ser. Mat. [Math. USSR-Izvestija], 1969, vol. 6, pp. 1373-1398 (in Russ.).
[12] Kostin A.V. On asymptotic of non-extendable solutions to Emden-Fowler type equations. DAN SSSR, 1971, vol. 200, no. 1, pp. 28-31 (in Russ.).
[13] Kusano T., Naito M. Nonlinear oscillation of fourth-order differential equations. Canad. J. Math., 1976, no. 28(4), pp. 840-852.
[14] Lovelady D.L. An oscillation criterion for a fourth-order integrally superlinear differential equation. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur., 1975, vol. (8) 58 (4), pp. 531-536.
[15] Kondratiev V.A., Samovol V.S. On certain asymptotic properties of solutions to equations of the Emden-Fowler type. Differents. Uravn. [Differential Equations], 1981, vol. 17, no. 4, pp. 749-750 (in Russ.).
[16] Kvinikadze G.G., Kiguradze I.T. On quickly growing solutions of nonlinear ordinary differential equations. Soobsh. Academy of Science GSSR, 1982, vol. 106, no. 3, pp. 465-468 (in Russ.).
[17] Taylor W.E. Jr. Oscillation criteria for certain nonlinear fourth order equations. Internat. J. Math. 1983, no. 6(3), pp. 551-557.
[18] Izobov N.A. On the Emden-Fowler equations with infinitely continuable solutions. Mat. Zametki [Mathematical Notes], 1984, vol. 35, iss. 2, pp. 189-199 (in Russ.).
[19] Kvinikadze G.G. On monotone regular and singular solutions of ordinary differential equations. Differents. Uravn. [Differential Equations], 1984, vol. 20, no. 2, pp. 360361 (in Russ.).
[20] Astashova I.V. On asymptotic behavior of solutions of certain nonlinear differential equations. UMN, 1985. vol. 40, no. 5 (245), p. 197 (in Russ.).
[21] Astashova I.V. On asymptotic behavior of alternating solutions to certain nonlinear differential equations of the third and forth order. Reports of extended session of a seminar of the I.N.Vekua Institute of Applied Mathematics, Tbilisi, 1988, no. 3(3), pp. 9-12 (in Russ.).
[22] Kiguradze I.T. On the oscillation criteria for one class of ordinary differential equations Differents. Uravn. [Differential Equations], 1992, vol. 28, no. 2, pp. 207219 (in Russ.).
[23] Chanturia T.A. On existence of singular and unbounded oscillatory solutions to Emden-Fowler Type Differential equations. Differents. Uravn. [Differential Equations], 1992, vol. 28, no. 6, pp. 1009-1022.
[24] Astashova I.V. On qualitatuve properties of solutions to Emden-Fowler type equations. UMN, 1996, vol. 51, no. 5, pp. 185 (in Russ.).
[25] Kozlov V.A. On Kneser solutions of higher order nonlinear ordinary differential equations. Ark. Mat, 1999, vol. 37, no. 2, pp. 305-322.
[26] Kiguradze I.T. On blow-up kneser solutions of nonlinear ordinary higher-order differential equations. Differents. Uravn. [Differential Equations], 2001, vol. 37, no. 6, pp. 735-743 (in Russ.).
[27] Kon’kov A.A. On solutions of nonautonomous ordinary differential equations. Izv. Ross. Akad. Nauk, Ser. Mat. [Izvestiya: Mathematics], 2001, vol. 65, no. 2, pp. 81-126 (in Russ.).
[28] Astashova I.V. Application of Dynamical Systems to the Study of Asymptotic Properties of Solutions to Nonlinear Higher-Order Differential Equations. J. of Mathematical Sciences. Springer Science + Business Media. 2005, no. 126(5), pp. 1361-1391.
[29] Astashova I.V. Classification of solutions of fourth-order equations of the Emden-Fowler type. Differents. Uravn. [Differential Equations], 2008, vol. 44, no. 6, pp. 881882 (in Russ.).
[30] Astashova I.V. Uniform estimates for positive solutions of higher-order quasilinear differential equations. Proceedings of Steklov Mathematical Institute, 2008, vol. 261, iss. 1, pp. 22-33.
[31] Astashova I.V. Asymptotic classification of solutions to 3rd and 4th Order Emden-Fowler type differential equations. Proceeding of the International Conference. Euler International Mathematical Institute, 2011. EIMI, St. Petersburg, 2011, pp. 9-12.
[32] Astashova I.V. Uniform estimates for solutions to the third-order Emden-Fowler Type autonomous differential equation. Functional differential equations, vol. 18, 1-2. Ariel University Center of Samaria. Ariel, Israel, 2011, pp. 5-63.
[33] Bartusek M., Dosla S. Asymptotic problems for fourth-order nonlinear differential equations. Boundary Value Problems, 2013, 2013:89. DOI:10.1186/1687-2770-2013-89
[34] Astashova I.V. On power and non-power asymptotic behavior of positive solutions to Emden-Fowler type higher-order equations. Advances in Difference Equations, 2013. DOI: 10.1186/10.1186/1687-1847-2013-220
[35] Astashova I.V. On asymptotic behavior of solutions to a forth-order nonlinear differential equation mathematical methods in finance and business administration. Proceedings of the 1st WSEAS International Conference on Pure Mathematics (PUMA ’14), Tenerife, Spain, January 10-12, 2014, WSEAS Press, 2013, pp. 32-41.
[36] Bidaut-Veron M.F. Local and global behaviour of solutions of quasilinear elliptic equations of Emden-Fowler type. Arch. Rat. Mech. Anal., 1989, vol. 107, pp. 293324.
[37] Kondratiev V.A. On qualitative properties of solutions to semi-linear elliptic equations. Trudy ofI.G. Petrovskiy seminar, 1991, vol. 16, pp. 186-190 (in Russ.).
[38] Egorov Yu.V., Kondratiev V.A., Oleinik O.A. Asymptotic behavior of the solutions to nonlinear elliptic and parabolic systems in tube domains. Mat. Sbornik [Sbornik: Mathematics], 1998, 189:3, pp. 45-68 (in Russ.).
[39] Mitidieri E., Pohozhaev S.I. A priori estimates and the absence of positive solutions to non-linear partial differential equalities and inequalities. Proceedings of Steklov Mathematical Institute, 2001, vol. 234, 383 p.
[40] Grishina G.V. On localization of support and unrealizable conditions of growth of solutions to semi-linear elliptic second-orderdifferential equations in unbounded domains. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2012, no. 1, pp. 15-19 (in Russ.).
[41] Kondratiev V.A. On oscillation of solutions to linear third- and fourth-order equations. Trudy MMO, 1959, vol. 8, pp. 259-281 (in Russ.).
[42] Astashova I.V. On existence of quasi-periodic oscillatory solutions of Emden -Fowler type higher-order equations. Differents. Uravn. [Differential Equations], 2014, vol. 50, no. 6, pp. 847-848 (in Russ.).