Восстановление характеристик потока жидкости в трубе по спектральным данным с использованием гибридных алгоритмов оптимизации
Авторы: Сулимов В.Д., Шкапов П.М., Бондаренко Н.И. | Опубликовано: 04.04.2016 |
Опубликовано в выпуске: #2(65)/2016 | |
DOI: 10.18698/1812-3368-2016-2-65-78 | |
Раздел: Механика | Рубрика: Механика жидкости, газа и плазмы | |
Ключевые слова: труба с жидкостью, частоты колебаний, характеристики потока, обратная задача, критериальная функция, глобальная оптимизация, гибридный алгоритм |
Рассмотрены собственные изгибные колебания прямолинейной трубы с протекающей идеальной жидкостью. Искомыми данными являются плотность жидкости и скорость ее течения в трубе, определяемые по результатам косвенных измерений. Входные данные представлены ограниченным спектром низших собственных частот колебаний трубы с жидкостью. Решение прямой задачи для математической модели системы получено методом гомотопических возмущений. Частные критерии обратной задачи предполагаются непрерывными, липшицевыми, не всюду дифференцируемыми, многоэкстремальными функциями. При поиске глобальных решений использованы новые гибридные алгоритмы оптимизации, объединяющие стохастический алгоритм сканирования пространства переменных и детерминированные методы локального поиска. Приведен численный пример.
Литература
[1] Pandoussis M.P. The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across Applied Mechanics // Journal of Sound and Vibration. 2008. Vol. 310. No. 3. P. 462-492.
[2] Wang L., Gan J., Ni Q. Natural frequency analysis of fluid-conveying pipes in the ADINA system // Journal of Physics: Conference Series. 2013. Vol. 449. P. 012014. DOI:10.1088/1742-6596/448/1/012014
[3] Dai H.L., Wang L., Qian Q., Gan J. Vibration analysis of three-dimensional pipes conveying fluid with consideration of steady combined force by transfer matrix method // Applied Mathematics and Computation. 2012. Vol. 219. No. 5. P. 2453-2464.
[4] Li S.-J., Liu G.-M., Kong W.-T. Vibration analysis of pipes conveying fluid by transfer matrix method // Nuclear Engineering and Design. 2014. Vol. 266. No. 1. P. 78-88.
[5] Xu M-R., Xu S.-P., Guo H.-Y. Determination of natural frequencies of fluid-conveying pipes using homotopy perturbation method // Computers and Mathematics with Applications. 2010. Vol. 60. No. 3. P. 520-527.
[6] Luczko J., Czerwinski A. Parametric vibrations of pipes induced by pulsating flows in hydraulic systems // Journal of Theoretical and Applied Mechanics. 2014. Vol. 52. No. 3. P. 719-730.
[7] Миронов М.А., Пятаков П.А., Андреев А.А. Вынужденные колебания трубы с потоком жидкости // Акустический журнал. 2010. Т. 56. № 5. С. 684-692.
[8] Dai H.L., Wang L., Ni Q. Dynamics of a fluid-conveying pipe of two different materials // International Journal of Engineering Science. 2013. Vol. 73. No. 1. P. 67-76.
[9] Yuan Y. An iterative method for updating gyroscopic systems based on measured modal data // Applied Mathematics and Computation. 2011. Vol. 218. No. 7. P. 3753-3762.
[10] Kirsch A. An introduction to the mathematical theory of inverse problems. New York: Springer, 2011. 308 p.
[11] Chu D., Lin L., Tan R.C.E., Wei Y. Condition numbers and perturbation analysis for the Tikhonov regularization of discrete ill-posed problems // Numerical Linear Algebra with Applications. 2011. Vol. 18. No. 1. P. 87-103.
[12] Renaut R.A., Hnetynkova I., Mead J. Regularization parameter estimation for large scale Tikhonov regularization using a priori information // Computational Statistics & Data Analysis. 2010. Vol. 54. No. 12. P. 3430-3445.
[13] Oberkampf W.L., Barone M.F. Measures of agreement between computation and experiment: Validation metrics // Journal of Computational Physics. 2006. Vol. 217. No. 1. P. 5-36.
[14] MEMPSODE: A global optimization software based on hybridization of population-based algorithms and local searches / C. Voglis, K.E. Parsopoulos, D.G. Papageorgiou, I.E. Lagaris, M.N. Vrahatis // Computer Physics Communications. 2012. Vol. 183. No. 2. P. 1139-1154.
[15] Карпенко А.П. Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой. М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. 446 с.
[16] Luz E.F.P., Becceneri J.C., De Campos Velho H.F. A new multi-particle collision algorithm for optimization in a high performance environment // Journal of Computational Interdisciplinary Sciences. 2008. Vol. 1. P. 3-10.
[17] Bagirov A.M., Al Nuaimat A., Sultanova N. Hyperbolic smoothing function method for minimax problems // Optimization: A Journal of Mathematical Programming and Operations Research. 2013. Vol. 62. No. 6. P. 759-782.
[18] Сулимов В.Д., Шкапов П.М. Гибридные алгоритмы вычислительной диагностики гидромеханических систем // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2014. № 4. С. 47-63.
[19] Lera D., Sergeev Ya.D. Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants // Computations in Nonlinear Science and Numerical Simulations. 2015. Vol. 23. No. 1-3. P. 326-342.
[20] Sulimov V.D., Shkapov P.M. Application of hybrid algorithms to computational diagnostic problems for hydromechanical systems // Journal of Mechanics Engineering and Automation. 2012. Vol. 2. No. 12. P. 734-741.