On the Question of the Relationship between the Rotational Motion of Molecules and the Alternation of Properties in Homological Series
Авторы: Koverda M.N., Ofitserov E.N., Millar S.A., Yakushin R.V., Boldyrev V.S. | Опубликовано: 27.04.2022 |
Опубликовано в выпуске: #2(101)/2022 | |
DOI: 10.18698/1812-3368-2022-2-87-101 | |
Раздел: Физика | Рубрика: Физика и технология наноструктур, атомная и молекулярная физика | |
Ключевые слова: even-odd effect, moment of inertia, rotational motion of molecules, entropy of rotational motion, melting point |
Abstract
In the paper the emphasis is placed on attempt to describe the effect of alternation of melting points in homologous series using the example of melting points of alkanes of normal structure from the frame of reference of the concept of rotational motion of molecules in a liquid. In the existing literature, the presence of separate sequences for the melting points of even and odd homologues is usually explained by packing effects, in which, due to different symmetry, even and odd representatives crystallize with different densities of the crystal lattice. However, this behavior can also be explained by the difference in the entropies of the rotational motion of molecules in the liquid phase, which is observed due to the different positions of the axis of rotation for even and odd homologues. The theoretically predicted difference in the moments of inertia for molecules with an even and an odd number of carbon atoms in the chain was confirmed by calculating the moments of inertia of n-alkane molecules, for which the atomic coordinates were optimized using density functional theory calculations
Please cite this article as:
Koverda M.N., Ofitserov E.N., Millar S.A., et al. On the question of the relationship between the rotational motion of molecules and the alternation of properties in homological series. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 2 (101), pp. 87--101. DOI: https://doi.org/10.18698/1812-3368-2022-2-87-101
Литература
[1] Haynes W.M., Lide D.R., Bruno T.J. CRC handbook of chemistry and physics. CRC Press, 2017.
[2] Baeyer A. Ueber Regelmassigkeiten im Schmelzpunkt homologer Verbindungen. Chem. Ber., 1877, vol. 10, no. 2, pp. 1286--1288. DOI: https://doi.org/10.1002/cber.18770100204
[3] Boese R., Weiss H.C., Blaser D. The melting point alternation in the short-chain n-alkanes: single-crystal X-ray analyses of propane at 30 K and of n-butane to n-nonane at 90 K. Angew. Chem. Int. Ed. Engl., 1999, vol. 38, iss. 7, pp. 988--992. DOI: https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<988::AID-ANIE988>3.0.CO;2-0
[4] Bond A.D. On the crystal structures and melting point alternation of the n-alkyl carboxylic acids. New J. Chem., 2004, vol. 28, iss. 1, pp. 104--114. DOI: http://dx.doi.org/10.1039/B307208H
[5] Bond A.D. Inversion of the melting point alternation in n-alkyl carboxylic acids by co-crystallization with pyrazine. CrystEngComm, 2006, vol. 8, iss. 4, pp. 333--337. DOI: https://doi.org/10.1039/B517513E
[6] Yang K., Cai Z., Jaiswal A., et al. Dynamic odd-even effect in liquid n-alkanes near their melting points. Angew. Chem., 2016, vol. 55, iss. 45, pp. 14090--14095. DOI: https://doi.org/10.1002/anie.201607316
[7] von Sydow E., Ekwall P., Larsen I., et al. Crystallization of normal fatty acids. Acta Chem. Scand., 1955, vol. 9, pp. 1685--1688. DOI: https://doi.org/10.3891/acta.chem.scand.09-1685
[8] Lermo E.R., Langeveld-Voss B., Janssen R., et al. Odd-even effect in optically active poly(3,4-dialkoxythiophene). Chem. Commun., 1999, no. 9, pp. 791--792. DOI: https://doi.org/10.1039/a901960j
[9] Costa J., Fulem M., Schroder B., et al. Evidence of an odd-even effect on the thermodynamic parameters of odd fluorotelomer alcohols. J. Chem. Thermodyn., 2012, vol. 54, pp. 171--178. DOI: https://doi.org/10.1016/j.jct.2012.03.027
[10] Mishra M.K., Varughese S., Ramamurty U., et al. Odd-even effect in the elastic modulii of α,ω-alkanedicarboxylic acids. J. Am. Chem. Soc., 2013, vol. 135, iss. 22, pp. 8121--8124. DOI: https://doi.org/10.1021/ja402290h
[11] Asai O., Kishita M., Kubo M. Magnetic susceptibilities of the cupric salts of some α,ω-dicarboxylic acids. J. Phys. Chem., 1959, vol. 63, iss. 1, pp. 96--99. DOI: https://doi.org/10.1021/j150571a024
[12] Geiseler G., Pilz E. Zur Kenntnis der Dipolmomente homologer α-Olefine. Chem. Ber., 1962, vol. 95, iss. 1, pp. 96--101. DOI: https://doi.org/10.1002/cber.19620950118
[13] Gopalakrishna C., Haranadh C., Murty C. Dipole moments of some cholesteryl compounds. J. Chem. Soc. Faraday Trans., 1967, vol. 63, pp. 1953--1958. DOI: https://doi.org/10.1039/tf9676301953
[14] Anderson H., Hammick D. Interaction between polynitro-compounds and aromatic hydrocarbons and bases. Part X. Picric acid and alkylated benzene derivatives in chloroform solution. J. Chem. Soc., 1950, pp. 1089--1094. DOI: https://doi.org/10.1039/jr9500001089
[15] Cardwell H., Kilner A. Elimination reactions. Part I. Acid-catalysed enolisation and substitution reactions of ketones. J. Chem. Soc., 1951, pp. 2430--2441. DOI: https://doi.org/10.1039/JR9510002430
[16] Gero A. Studies on enol titration. II. Enol contents of some ketones and esters in the presence of methanol. J. Org. Chem., 1954, vol. 19, iss. 12, pp. 1960--1970. DOI: https://doi.org/10.1021/jo01377a013
[17] Yamana T., Mizukami Y., Tsuji A., et al. Studies on the stability of amides. I. Hydrolysis mechanism of N-substituted aliphatic amides. Chem. Pharm. Bull., 1972, vol. 20, iss. 5, pp. 881--891. DOI: https://doi.org/10.1248/cpb.20.881
[18] Okamoto K., Kita T., Shingu H. Kinetic studies of bimolecular nucleophilic substitution. III. Rates of SN2 and E2 reactions of ω-chloroalkylbenzenes with sodium acetate in 50 vol% aqueous acetone --- alternation effects in saturated carbon chains. Bull. Chem. Soc. Jpn., 1967, vol. 40, no. 8, pp. 1908--1912. DOI: https://doi.org/10.1246/bcsj.40.1908
[19] Kumar N., Chaudhary S., Upadhyay P., et al. Even-odd effect of the homologous series of nCHBT liquid crystal molecules under the influence of an electric field: a theoretical approach. Pramana --- J. Phys., 2020, vol. 94, art. 106. DOI: https://doi.org/10.1007/s12043-020-01967-0
[20] Ojha D.P., Kumar D., Pisipati V. Odd-even effect in a homologous series of 4-n-alkylbenzoic acids: role of anisotropic pair potential. Z. Naturforsch. A, 2002, vol. 57, iss. 3-4, pp. 189--193. DOI: https://doi.org/10.1515/zna-2002-3-411
[21] Pines A., Ruben D.J., Allison S. Molecular ordering and even-odd effect in a homologous series of nematic liquid crystals. Phys. Rev. Lett., 1974, vol. 33, iss. 17, pp. 1002--1005. DOI: https://doi.org/10.1103/PhysRevLett.33.1002
[22] Yamamoto R., Ishihara S., Hayakawa S., et al. The even-odd effect in the Kerr effect for nematic homologous series. Phys. Lett. A, 1977, vol. 60, iss. 5, pp. 414--416. DOI: https://doi.org/10.1016/0375-9601(77)90037-8
[23] Chang R., Jones F.B., Ratto J.J. Molecular order and an odd-even effect in an homologous series of schiff-base nematic liquid crystals. Mol. Cryst. Liq. Cryst., 1976, vol. 33, iss. 1-2, pp. 13--18. DOI: https://doi.org/10.1080/15421407608083866
[24] Pradeilles J.A., Zhong S., Baglyas M., et al. Odd-even alternations in helical propensity of a homologous series of hydrocarbons. Nat. Chem. 2020, vol. 12, pp. 475--480. DOI: https://doi.org/10.1038/s41557-020-0429-0
[25] Lee S.K., Heo S., Lee J.G., et al. Odd-even behavior of ferroelectricity and antiferroelectricity in two homologous series of bent-core mesogens. J. Am. Chem. Soc., 2005, vol. 127, iss. 31, pp. 11085--11091. DOI: https://doi.org/10.1021/ja052315q
[26] Hofmann P. Solid state physics. An introduction. Wiley, 2015.
[27] Le Neindre B., Garrabos Y. Scaled equations for the coexistence curve, the capillary constant and the surface tension of n-alkanes. Fluid Phase Equilib., 2002, vol. 198, iss. 2, pp. 165--183. DOI: https://doi.org/10.1016/S0378-3812(01)00737-3
[28] Chandler D. Introduction to modern statistical mechanics. Oxford Univ. Press, 1987.
[29] Koverda M., Ofitserov E., Shilanova E., et al. Using the molecular rotational motion concept to predict the volume expansion coefficients of liquids. Phys. Chem. Liquid., 2021, vol. 59, iss. 5, pp. 770--780. DOI: https://doi.org/10.1080/00319104.2020.1814774
[30] Chickos J.S., Nichols G. Simple relationships for the estimation of melting temperatures of homologous series. J. Chem. Eng. Data, 2001, vol. 46, iss. 3, pp. 562--573. DOI: https://doi.org/10.1021/je0002235
[31] Flory P.J., Vrij A. Melting points of linear-chain homologs. The normal paraffin hydrocarbons. J. Am. Chem. Soc., 1963, vol. 85, iss. 22, pp. 3548--3553. DOI: https://doi.org/10.1021/ja00905a004
[32] Frenkel J. Kinetic Theory of Liquids. Peter Smith Publisher, Incorporated, 1984.
[33] Barca G., Bertoni C., Carrington L. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys., 2020, vol. 152, iss. 15, art. 154102. DOI: https://doi.org/10.1063/5.0005188
[34] Koverda M. Program Moment of inertia. Mendeley Data, 2020, Version 1. DOI: https://doi.org/10.17632/skj4999wr6.1
[35] Russell D. NIST computational chemistry comparison and benchmark database. NIST Standard Reference Database Number 101. Release 21. DOI: https://doi.org/10.18434/T47C7Z (accessed: 15.01.2022).
[36] Koverda M. On the question of the relationship between the rotational motion of molecules and the alternation of properties in homological series. Additional materials for the article. Mendeley Data, 2020, Version 1. DOI: https://doi.org/10.17632/3n6wr3kkbx.1