|

Автомодельное решение задачи теплопереноса в твердом теле, содержащем сферический очаг разогрева с теплопоглощающим покрытием

Авторы: Аттетков А.В., Волков И.К. Опубликовано: 10.08.2016
Опубликовано в выпуске: #4(67)/2016  
DOI: 10.18698/1812-3368-2016-4-97-106

 
Раздел: Физика | Рубрика: Теплофизика и теоретическая теплотехника  
Ключевые слова: изотропное твердое тело, сферический очаг разогрева, термически тонкое теплопоглощающее покрытие, температурное поле, автомодельное решение

Рассмотрена задача определения температурного поля изотропного твердого тела со сферическим очагом разогрева, обладающим термически тонким теплопоглощающим покрытием. Исследован нестационарный режим теплообмена с изменяющимися во времени коэффициентом теплоотдачи и температурой очага разогрева. Определены достаточные условия, выполнение которых обеспечивает возможность реализации автомодельного процесса теплопереноса в анализируемой системе. Качественно исследованы физические свойства изучаемого автомодельного процесса и установлены его специфические особенности. Теоретически обоснована возможность реализации граничного режима с обострением в сферическом очаге разогрева.

Литература

[1] Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964. 488 с.

[2] Лыков А.В. Теория теплопроводности. М.: Высш. шк., 1967. 600 с.

[3] Карташов Э.М. Аналитические методы в теории теплопроводности твердых тел. М.: Высш. шк., 2001. 550 с.

[4] Пудовкин М.А., Волков И.К. Краевые задачи математической теории теплопроводности в приложении к расчетам температурных полей в нефтяных пластах при заводнении. Казань: Изд-во Казанского ун-та, 1978. 188 с.

[5] Карташов Э.М., Кудинов В.А. Аналитическая теория теплопроводности и прикладной термоупругости. М.: URSS, 2012. 653 с.

[6] Аттетков А.В., Волков И.К., Пилявский С.С. Иерархия математических моделей процесса теплопереноса в твердом теле со сферическим очагом разогрева, обладающим покрытием // Труды XVII Школы - семинара молодых ученых и специалистов под руководством академика РАН А.И. Леонтьева. М., 2009. Т. 1. С. 166-169.

[7] Аттетков А.В., Волков И.К., Пилявский С.С. Температурное поле изотропного твердого тела со сферическим очагом разогрева, обладающим покрытием // Известия РАН. Энергетика. 2010. № 3. С. 122-128.

[8] Аттетков А.В. О возможности управляемого воздействия на температурное поле твердого тела со сферическим очагом разогрева, обладающим теплопоглощающим покрытием // Тепловые процессы в технике. 2012. Т. 4. № 10. С. 475-480.

[9] Аттетков А.В., Волков И.К. Сингулярные интегральные преобразования как метод решения одного класса задач нестационарной теплопроводности // Известия РАН. Энергетика. 2016. № 1. С. 148-156.

[10] Аттетков А.В., Волков И.К. "Уточненная модель сосредоточенной емкости" процесса теплопереноса в твердом теле со сферическим очагом разогрева, обладающим покрытием // Тепловые процессы в технике. 2016. Т. 8. № 2. С. 92-98.

[11] Седов Л.И. Методы подобия и размерностей в механике. М.: Наука, 1977. 440 с.

[12] Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966. 686 с.

[13] Волосевич П.П., Леванов Е.И. Автомодельные решения задач газовой динамики и теплопереноса. М.: Изд-во МФТИ, 1997. 240 с.

[14] Самарский А.А., Галактионов В.А., Курдюмов С.П., Михайлов А.П. Режимы с обострением в задачах для квазилинейных параболических уравнений. М.: Наука, 1987. 478 с.

[15] Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967. 736 с.

[16] Марголин А.Д., Крупкин В.Г. Развитие пузыря в жидкости при наличии источника газовыделения // Физика горения и взрыва. 1985. Т. 21. № 2. С. 76-81.