Induction of a Strong Paramagnetic Field Inside Partially Ionized and Weakly Magnetized Plasma by the ExB Drift
Авторы: Twarog D., Ryzhkov S.V. | Опубликовано: 27.09.2018 |
Опубликовано в выпуске: #5(80)/2018 | |
DOI: 10.18698/1812-3368-2018-5-45-53 | |
Раздел: Физика | Рубрика: Теплофизика и теоретическая теплотехника | |
Ключевые слова: alternative system, magnetic field, plasma accelerator |
Partially ionized and weakly magnetized plasma compounded from natural gas and potassium seed flows along the outer cylindrical chamber, and is placed around the inner chamber. Inside the outer chamber, the azimuthal E×B drift induces a paramagnetic field Bp, with an intensity of tens of Teslas. The intensity of the Bp field is controlled by the inwardly directed radial electric field E and plasma temperature. The intensity of this field Ein, can be easily controlled by changes in the electric field produced by two co-axial placed cylindrical electrodes. Inside the inner chamber, the Bp field becomes anti-parallel to the external magnetic field Bz. The theoretically obtained values of magnetic field in the outer chamber attains Bp ∼ 20.3 T, and declines to ∼13.5 T in the inner chamber
Литература
[1] Ivanov D., Keilin V., Stavissky B., Chernoplekov N. Some results from the T-7 Tokamak superconducting magnet test program. IEEE Trans. on Mag., 1979, vol. 15, iss. 1, pp. 550–553. DOI: 10.1109/TMAG.1979.1060275
[2] Sharma R.G. Superconductivity. Basics and applications to magnets. Springer, 2015. Pp. 305–357.
[3] Ulbricht A., Duchateau J.L., Fietz W.H., Ciazynski D., et al. The ITER toroidal field model coil project. Fusion Eng. Des., 2005, vol. 73, iss. 2-4, pp. 189–327. DOI: 10.1016/j.fusengdes.2005.07.002
[4] Gilbert M.R., Dudarev S.L., Zheng S., Packer L.W., Sublet J.-Ch. An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation. Nuclear Fusion, 2012, vol. 52, no. 8, art. 083019. DOI: 10.1088/0029-5515/52/8/083019
[5] Ryzhkov S.V. Comparison of a deuteriumelium-3 FRC and mirror trap. Fusion Science and Technology, 2007, vol. 51, iss. 2T, pp. 190–192. DOI: 10.13182/FST07-A1347
[6] Ryzhkov S.V. Compact toroid and advanced fuel — together to the Moon?! Fusion Science and Technology, 2005, vol. 47, iss. 1T, pp. 342–344. DOI: 10.13182/FST05-A684
[7] Lehnert B. Rotating plasmas. Nuclear Fusion, 1971, vol. 11, no. 5, pp. 485–533. DOI: 10.1088/0029-5515/11/5/010
[8] Lehnert B. Screening of a high-density plasma from neutral gas penetration. Nuclear Fusion, 1968, vol. 73, no. 8, pp. 173–181. DOI: 10.1088/0029-5515/8/3/005
[9] Galeev A.A., Sudan R.N., eds. Basic plasma physics. Selected chapters. Elsevier, 1989. 32 p.
[10] Braginskii S.I. In Reviews of plasma physics. Vol. 1. Consultants Bureau, 1965. 205 p.
[11] Rozhansky V.A., Tsendin L.D. Transport phenomena in partially ionized plasma. Taylor and Francis, 2001. 488 p.
[12] Fridman A., Kennedy L.A. Plasma physics and engineering. CRC Press, 2011. 941 p.
[13] Danielsson L. Review of the critical velocity of gas-plasma interaction. Astrophysics and Space Science, 1973, vol. 24, iss. 2, pp. 459–485. DOI: 10.1007/BF02637168
[14] Chernyshev V. International co-operation in MHD electrical power generation. IAEA Bulletin, 1977, vol. 20, no. 1, pp. 42–53.
[15] Dhareppagol V.D., Saurav A. The future power generation with MHD generators magneto hydrodynamic generation. IJAEEE, 2013, vol. 2, no. 6, pp. 101–105.
[16] Louis J.F. Closed cycle magnetohydrodynamic generator. US Patent 3487240. Appl. 09.02.1966, publ. 30.12.1969.
[17] Wesson J. Tokamaks. Oxford, Clarendon, 1997. 694 p.
[18] Twarog D. Field reversed configuration induced by a paramagnetic field. IEEE Trans. Plasma Sci., 2013, vol. 41, iss. 2, pp. 280–289. DOI: 10.1109/TPS.2013.2240019
[19] Song Mi-Y., Yoon J.-S., Cho H., Itikawa Y., Karwasz G.P., Kokoouline V., Nakamura Y., Tennyson J. Cross sections for electron collisions with methane. J. Phys. Chem. Ref. Data, 2015, vol. 44, iss. 2, pp. 2–20. DOI: 10.1063/1.4918630
[20] Chen F.F. Introduction to plasma physics and controlled fusion. Plenum Press, 1974. 329 p.
[21] Celinski Z.N. The effect of cold, electrode boundary layers on the electrical characteristics of DC MHD generators. Nukleonika, 1966, no. 11, pp. 615–628.
[22] Romadanov I.V., Ryzhkov S.V. Compact toroid challenge experiment with the increasing in the energy input into plasma and the level of trapped magnetic field. Fusion Engineering and Design, 2014, vol. 89, iss. 12, pp. 3005–3008. DOI: 10.1016/j.fusengdes.2014.09.001
[23] Romadanov I.V., Ryzhkov S.V. Regimes of pulsed formation of a compact plasma configuration with a high energy input. Plasma Physics Reports, 2015, vol. 41, iss. 10, pp. 814–819. DOI: 10.1134/S1063780X15100074
[24] Mozgovoy A.G., Romadanov I.V., Ryzhkov S.V. Formation of a compact toroid for enhanced efficiency. Physics of Plasmas, 2014, vol. 21, iss. 2, art. 022501. DOI: 10.1063/1.4863452
[25] Shipley G.A., Awe T.J., Hutsel B.T., Slutz S.A., Lamppa D.C., Greenly J.B., Hutchinson T.M. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns. Physics of Plasmas, 2018, vol. 25, iss. 5, art. 052703. DOI: 10.1063/1.5028142
[26] Quimby D.C., Hoffman A.L., Vlases G.C. LINUS cycle calculations including plasma transport and resistive flux loss. Nuclear Fusion, 1981, vol. 21, no. 5, pp. 553–570. DOI: 10.1088/0029-5515/21/5/005
[27] General Fusion: company website. Available at: http://www.generalfusion.com (accessed: 05.09.2017).