Investigation of the Nonstationary Energy Distribution of an Atomic Collision Cascade

Авторы: Aleksandrov A.A., Akatev V.A., Metelkin E.V., Baryscheva E.Yu. Опубликовано: 08.12.2019
Опубликовано в выпуске: #6(87)/2019  
DOI: 10.18698/1812-3368-2019-6-40-49

Раздел: Физика | Рубрика: Теоретическая физика  
Ключевые слова: kinetic equation, model, atomic cascade, nonstationary energy distribution, collision, deceleration of atoms, interaction section

In this paper, we derive a nonstationary distribution function describing the energy distribution of the cascade of moving atoms taking into account their multiplication. The function was derived by solving the Boltzmann kinetic equation. The development of the cascade was considered for the materials consisting of atoms of the same type without taking into account the binding energy of atoms at the crystal lattice sites. The scattering of moving atoms is assumed to be elastic and spherically symmetrical in a center-of-inertia system, and the interaction cross-section is assumed to be constant. The use of these assumptions allows us to derive simple analytic formulas for the nonstationary energy distribution function for the cascade and analyze its main distinctive features. The results obtained allow evaluating the accuracy of various approximate solutions


[1] Lehmann Chr. Interaction of radiation with solids and elementary defect production. North Holland, 1977.

[2] Was G.S. Fundamentals of radiation materials science: metals and alloys. Berlin, Heidelberg, Springer, 2007. DOI: https://doi.org/10.1007/978-3-540-49472-0

[3] Ryazanov A.I., Metelkin E.V. Concerning the theory of radiation cascades of atomic collisions in a solid with an arbitrary interatomic interaction potential. Radiat. Eff. Defects S., 1980, vol. 52, no. 1--2, pp. 15--23. DOI: https://doi.org/10.1080/00337578008210012

[4] Satoh Y., Kojima S., Yoshiie T., et al. Criterion of subcascade formation in metals from atomic collision calculation. J. Nucl. Mater., 1991, no. 179--181, part 2, pp. 901--904. DOI: https://doi.org/10.1016/0022-3115(91)90234-X

[5] Sato Y., Yoshiie T., Kiritani M. Binary collision calculation of subcascade structure and its correspondence to observe subcascade defects in 14 MeV neutron irradiated copper. J. Nucl. Mater., 1992, no. 191--194, part B, pp. 1101--1104. DOI: https://doi.org/10.1016/0022-3115(92)90645-2

[6] Metelkin E.V., Ryazanov A.I. Threshold energy for subcascade production. Atomic Energy, 1997, vol. 83, iss. 3, pp. 653--657. DOI: https://doi.org/10.1007/BF02415246

[7] Metelkin E.V., Ryazanov A.I., Semenov E.V. Developing new theoretical models of the formation of atomic collision cascades and subcascades in irradiated solids. J. Exp. Theor. Phys., 2008, vol. 107, iss. 3, pp. 394--404. DOI: https://doi.org/10.1134/S1063776108090070

[8] Ryazanov A.I., Metelkin E.V., Semenov E.V. Modeling of cascade and sub-cascade formation at high PKA energies in irradiated fusion structural materials. J. Nucl. Mater., 2009, vol. 386--388, pp. 132--134. DOI: https://doi.org/10.1016/j.jnucmat.2008.12.071

[9] Aleksandrov A.A., Akatev V.A., Metelkin E.V., et al. Develop a model to study the energy distribution of cascades of atomic collisions. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 1, pp. 27--36. DOI: 10.18698/1812-3368-2019-1-27-36

[10] Isakov A.I., Kazarnovskiy M.V., Medvedev Yu.A., et al. Nestatsionarnoe zamedlenie neytronov. Osnovnye zakonomernosti i nekotorye prilozheniya [Non-stationary neutron moderation. Basic principles and some applications]. Moscow, Nauka Publ., 1984.

[11] Bateman H., Erdelyi A. Tables of integral transforms. Vol. 1. McGraw-Hill, 1954.