|

Gravitational and Coulomb Potentials Interference in Heliosphere

Авторы: Vysikaylo P.I., Ryabukha N.S. Опубликовано: 14.12.2020
Опубликовано в выпуске: #6(93)/2020  
DOI: 10.18698/1812-3368-2020-6-93-121

 
Раздел: Физика | Рубрика: Теоретическая физика  
Ключевые слова: solar wind, electroneutrality, gravitational interactions, Coulomb interactions, proton, alpha particle

Interference of gravitational and Coulomb potentials in the entire heliosphere is considered, it is being manifested in generation of two opposite flows of charged particles: 1) that are neutral or with a small charge to the Sun, and 2) in the form of a solar wind from the Sun. According to the Einstein --- Smoluchowski relation Te (R) = eDe / µe ~ (E/N)0.75 based on the N experimental values (heavy particles number density --- the ne electron concentration), the Te electron temperature in the entire heliosphere was for the first time analytically calculated depending on the charge of the Sun and distance to it R. Calculated values of the registered ion parameters in the solar wind were compared with experimental observations. Reasons for generating the ring current in inhomogeneous heliosphere and inapplicability of the Debye theory in describing processes in the solar wind (plasma with current) are considered

Литература

[1] Eddington A.S. The internal constitution of the stars. Cambridge Univ. Press, 1926.

[2] Vysikaylo P.I. Weak violation of electroneutrality in the heliogeospheres: electroneutrality disorders. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2020, no. 3 (90), pp. 88--106 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2020-3-88-106

[3] Vysikaylo F.I., Korotkova M.A. Solnechnyy veter kak sledstvie funktsionirovaniya kulonovskikh zerkal v astrofizike [Solar wind as a result of Coulomb mirrors functioning in astrophysics]. XIII ezhegod. konf. "Fizika plazmy v solnechnoy sisteme" [XIII Solar System Plasma Conf., 2018. Abs.]. Moscow, Space Research Institute Publ., 2018, p. 223 (in Russ.).

[4] Vysikaylo P.I., Korotkova M.A. Determination of the Sun’s charge by the parameters of heavy ions in the solar wind. J. Phys., Conf. Ser., 2018, vol. 1009, art. 012020. DOI: https://doi.org/10.1088/1742-6596/1009/1/012020

[5] XV ezhegodnaya konf. "Fizika plazmy v solnechnoy sisteme" Sb. tez. [XV Solar System Plasma Conf., February 10--14, 2020. Abs.]. Moscow, Space Research Institute, 2018, 334 p. (in Russ.). Available at: https://plasma2020.cosmos.ru/docs/PLASMA-2020-IKI-AbstractBook.pdf (accessed: 07.02.2020).

[6] ACE SWICS 1.1 level 2 data. srl.caltech.edu: website. Available at: http://www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_SWICS-SWIMS.html (accessed: 10.04.2020).

[7] Von Steiger R., Schwadron N.A., Fisk L.A., et al. Composition of quasi-stationary solar wind flows from Ulysses/solar wind ion composition spectrometer. J. Geophys. Res., 2000, vol. 105, iss. A12, pp. 27217--27238. DOI: https://doi.org/10.1029/1999JA000358

[8] Monin A.S. Global hydrodynamics of the sun. Sov. Phys. Usp., 1980, vol. 23, no. 9, pp. 594--619. DOI: https://doi.org/10.1070/PU1980v023n09ABEH005857

[9] Izmodenov V.V. Global structure of the heliosphere: 3D kinetic-MHD model and the interpretation of spacecraft data. Phys.-Usp., 2018, vol. 61, no. 8, pp. 793--804. DOI: https://doi.org/10.3367/UFNe.2017.04.038293

[10] Parker E. Solar wind. UFN, 1964, vol. 84, no. 9, pp. 169--182 (in Russ.). DOI: https://doi.org/10.3367/UFNr.0084.196409e.0169

[11] Hundhausen A.J. Coronal expansion and solar wind. Physics and Chemistry in Space, vol. 5. Berlin, Heidelberg, Springer, 1972. DOI: https://doi.org/10.1007/978-3-642-65414-5

[12] Kovalev V.A., Laptukhov A.I. Solar wind modeling with wave power source. Geomagnetizm i aeronomiya, 1989, vol. 29, no. 6, pp. 1013--1015 (in Russ.).

[13] Armand N.A., Ejimov A.I., Yakovlev O.I. A model of the solar wind turbulence from radio occultation experiments. Astron. Astrophys., 1987, vol. 183, pp. 135--141.

[14] Zelenyy L.M., Veselovskiy I.S., eds. Plazmennaya geliogeofizika. T. 2 [Plasma heliogeophysics. Vol. 2]. Moscow, FIZMATLIT Publ., 2008.

[15] Rosseland S. Electrical state of a Star. Mon. Not. R. Astron. Soc., 1924, vol. 84, iss. 9, pp. 720--728. DOI: https://doi.org/10.1093/mnras/84.9.720

[16] Bailey V.A. The Sun’s electrical charge. Nature, 1964, vol. 201, pp. 1202--1203. DOI: https://doi.org/10.1038/2011202b0

[17] Shklovskiy I.S. Fizika solnechnoy korony [Physics of solar corona]. Moscow, FIZMATGIZ Publ., 1962.

[18] Born M. Atomnaya fizika [Nuclear physics]. Moscow, Mir Publ., 1965.

[19] Vysikaylo P.I. [Unstability of focusing mass]. Mezhd. konf. MSS-09 Transformatsiya voln, kogerentnye struktury i turbulentnost’. Sb. tr. [Proc. Int. Conf. MSS-09 Mode Conversion, Coherent Structures and Turbulence]. Moscow, Lenard Publ., 2009, p. 387.

[20] Vysikaylo P.I. Arkhitektura kumulyatsii v dissipativnykh strukturakh [Cumulation architecture in dissipative structures]. Saarbrucken, Palmarium Academic Publ., 2013.

[21] Vysikaylo Ph.I. Detailed elaboration and general model of the electron treatment of surfaces of charged plasmoids (from atomic nuclei to white dwarves, neutron stars, and galactic cores). Self-condensation (self-constriction) and classification of charged plasma structures --- plasmoids. Part II. Analysis, classification, and analytic description of plasma structures observed in experiments and nature. The shock waves of electric fields in stars. Surf. Engin. Appl. Electrochem., 2012, vol. 48, no. 3, pp. 212--229. DOI: https://doi.org/10.3103/S106837551203012X

[22] Vysikaylo P.I. Long-range coulomb potentials, classical and quantum e-membranes, focusing plasmoids (a review). Uspekhi prikladnoy fiziki [Advances in Applied Physics], 2015, vol. 3, no. 5, pp. 471--480 (in Russ.).

[23] Vysikaylo P.I. Cumulative physics of crystals and plasmoids. Uspekhi prikladnoy fiziki [Advances in Applied Physics], 2015, vol. 3, no. 3, pp. 226--235 (in Russ.).

[24] Podgornyi I.M., Sagdeev R.Z. Physics of interplanetary plasma and laboratory experiments. Sov. Phys. Usp., 1970, vol. 12, no. 4, pp. 445--462. DOI: https://doi.org/10.1070/PU1970v012n04ABEH00375

[25] Martynov D.Ya. Kurs obshchey astrofiziki [Main course of astrophysics]. Moscow, Nauka Publ., 1988.

[26] Huxley L.G., Crompton R.W. The diffusion and drift of electrons in gases. Wiley, 1966.

[27] Gann Dzh. Effect of Gann. UFN, 1966, vol. 89, pp. 147--160 (in Russ.). DOI: https://doi.org/10.3367/UFNr.0089.196605e.0147

[28] Vysikaylo P.I. Leap in parameters of non-uniform collisional plasma with current conditioned by quasi-neutrality disruption. Fizika plazmy, 1985, vol. 11, no. 10, pp. 1256--1261 (in Russ.).

[29] Babichev V.N., Vysikaylo P.I., Golubev S.A. Experimental approval of parameters leap existence of gas-discharge plasma. Pis’ma v ZhTF, 1986, vol. 12, no. 16, pp. 992--995 (in Russ.).

[30] Vysikaylo P.I., Tsendin L.D. Highly non-uniform profile of plasma concentration in discharge at elevated pressure. Fizika plazmy, 1986, vol. 12, no. 10, pp. 1206--1210 (in Russ.).

[31] Vysikaylo P.I., Trukhin S.S. Numerical model of plasma column by longitudinal discharge perturbed by external ionizer. TVT, 1987, vol. 25, no. 3, pp. 597--599 (in Russ.).

[32] Richardson J.D., Paularena K.I., Lazarus A.J., et al. Radial evolution of the solar wind from IMP 8 to Voyager 2. Geophys. Res. Lett., 1995, vol. 22, iss. 4, pp. 325--328. DOI: https://doi.org/10.1029/94GL03273

[33] Prokhorov A.M., ed. Fizicheskiy entsiklopedicheskiy slovar’ [Physical encyclopaedical dictionary]. Moscow, Sovetskaya entsiklopediya Publ., 1984.

[34] Articles from the Great Soviet Encyclopedia. Available at: https://www.booksite.ru/fulltext/1/001/008/056/332.htm (accessed: 02.02.2020).

[35] Ermolaev Yu.I. Eksperimental’noe isuchenie krupnomasshtabnoy struktury solnechnogo vetra. Dis. d-ra fiz.-mat. nauk [Experimental study on large-scale structure of solar wind. Dr. Sc. Eng. Diss.]. Moscow, Space Research Institute, 2002 (in Russ.).

[36] Smirnov B.M. Electrical cycle in the Earth’s atmosphere. Phys. Usp., 2014, vol. 57, no. 11, pp. 1041--1062. DOI: https://doi.org/10.3367/UFNe.0184.201411a.1153

[37] Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. 1. Mekhanika [Theoretical physics. Vol. 1. Mechanics]. Moscow, FIZMATLIT Publ., 2013.

[38] Vysikaylo P.I. "Quasi-cooper" bi-cyclones. 3D turbulence structure with rotation and the cumulative jet. Inzhenernaya fizika [Engineering Physics], 2013, no. 7, pp. 3--36 (in Russ.).

[39] Birkhoff G. Hydrodynamics. A study in logic, fact, and similitude. Princeton Univ. Press, 1950.

[40] Zababakhin E.I., Zababakhin I.E. Yavleniya neogranichennoy kumulyatsii [Phenomena of unbounded cumulation]. Moscow, Nauka Publ., 1988.

[41] Vysikaylo P.I. [Libration (cumulation) points, lines and surfaces of Euler ---Vysikaylo in non-uniform structures in plasma with current]. XXXVII Mezhdunar. (Zvenigorodskaya) konf. po fizike plazmy i UTS [XXXVII Int. (Zvenigorod) Conf. on Plasma Physics and Controlled Thermonuclear Fusion], 2010 (in Russ.). Available at: http://www.fpl.gpi.ru/Zvenigorod/XXXVII/T.html#Sekcija%20T (accessed: 10.04.2020).

[42] Vysikaylo P.I. Cumulative point --- L1 between two positively charged plasma structures (3-D strata). IEEE Plasma Sci., 2015, vol. 42, iss. 12, pp. 3931--3935. DOI: https://doi.org/10.1109/TPS.2014.2365438