Детектирование спектров комбинационного рассеяния света высокого спектрального разрешения…
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 2
81
T —
thymine. Detection of the narrow spectral lines allows us
to determine the characteristic time scale of vibrational excita-
tion and makes it possible to study the dynamics of fast relaxa-
tion processes of atoms vibrational motions in biomacromole-
cules. Findings of the research show that for one of the nar-
rowest line at 1355.4 sm
–1
, attributed to fluctuations of the
methyl group of dT, the full width of the line on a half of its
height equals 14.6 sm
–1
and the appropriate life time equals
0.38 ps. We compared the obtained spectra with the complete
Raman scattering spectra obtained from the dried-up full-
sized DNA of a calf received with the high spectral and spatial
resolution and observed in the broad spectral range of the
frequency shifts of the scattered light from 6 to 4000 sm
–1
. The
received results show that short oligonucleotides can be used
as successful model objects for investigating the molecular
DNA structure when studying their secondary structures.
These data can be also required in creating and investigating
different complexes with inorganic semiconductor nanostruc-
tures on the basis of such short oligonucleotides. The results
obtained in the research make it possible to implement theo-
retical and experimental studies required for achieving a
deeper fundamental understanding of structure-property
relationship for quantum-confined semiconductors nano-
structures and biomolecules and, are therefore of high interest
to the new directions of rapidly developing nano-
bioelectronics
REFERENCES
[1] Marnix H., Medema M.H., Raaphorst R., Takano E., Breitling R. Computational tools for
the synthetic design of biochemical pathways.
Nature Reviews Microbiology
, 2012, vol. 10,
no. 3, pp. 191–202. DOI: 10.1038/nrmicro2717 Available at:
http://www.nature.com/nrmicro/journal/v10/n3/full/nrmicro2717.html
[2] Fleischmann M., Hendra P.J., McQuillan A.J. Raman spectra of pyridine adsorbed at a sil-
ver electrode.
Chem. Phys. Lett.
, 1974, vol. 26, no. 2, pp. 163–166.
DOI: 10.1016/0009-2614(74)85388-1 Available at:
http://www.sciencedirect.com/science/article/pii/0009261474853881
[3]
Jeanmaire D.L., Van Duyne R.P. Surface Raman spectroelectrochemistry. Part I. Heterocy-
clic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode.
J. Electroanal.
Chem.
, 1977, vol. 84, no. 1, p. 1–20. DOI: 10.1016/S0022-0728(77)80224-6 Available at:
http://www.sciencedirect.com/science/article/pii/S0022072877802246[4] Albrecht M.G., Creighton J.A. Anomalously intense Raman spectra of pyridine at a silver
electrode.
Journal of the American Chemical Society
, 1977, vol. 99, no. 15, pp. 5215–5217.
DOI: 10.1021/ja00457a071 Available at:
http://pubs.acs.org/doi/abs/10.1021/ja00457a071[5] McCall S.L., Platzman P.M., Wolff P.A. Surface enhanced Raman scattering.
Physics
Letters A
, 1980, vol. 77, no. 5, pp. 381–383. DOI: 10.1016/0375-9601(80)90726-4
Available at:
http://www.sciencedirect.com/science/article/pii/0375960180907264