Electrical Conductivity and Association of 1-butyl-3-methylpyridinium bis{(trifluoromethyl)sulfonyl}amide in Some Polar Solvents

Авторы: Karpunichkina I.A., Artemkina Yu.M., Plechkova N.V., Shcherbakov V.V. Опубликовано: 05.07.2023
Опубликовано в выпуске: #3(108)/2023  
DOI: 10.18698/1812-3368-2023-3-145-163

Раздел: Химия | Рубрика: Физическая химия  
Ключевые слова: 1-butyl-3-methylpyridinium bis{(trifluoromethyl)sulfonyl}amide, electrical conductivity, association, acetonitrile, dimethylsulfoxide, dimethylformamide


The influence of alternating current frequency in the determination of the electrical conductivity of ionic liquids’ (ILs) dilute solutions in polar solvents has been considered. The frequency ranges in which the influence of polarization processes on electrodes occur and ionic relaxation occurs in the bulk of the solution have been excluded from the results of the electrical conductivity measurements. The association constants for Ka ILs in polar solvents published in literature were analyzed. A discrepancy between the values of Ka was noted, which is associated with the use of different calculation equations for electrical conductivity and the insufficiently correct consideration of the frequency dependance of the measured resistance. Based on the measured values of the electrical conductivity of dilute solutions of 1-butyl-3-methylpyridinium bis{(trifluoromethyl)sulfonyl}amide ([Bmpy][NTf2]) in acetonitrile (AN), dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) in the 20--65 °C temperature range, the thermodynamic characteristics of the [Bmpy][NTf2] association were determined. The effect of temperature on the molar electrical conductivity of [Bmpy][NTf2] at infinite dilution λ0 and the association constant Ka have been considered. The Walden product (λ0η), where η is the viscosity of the solvent, was also analysed. It was shown that in AN, DMSO, and DMF, λ0η changes in different ways with increasing temperature; however, the value of λ0η/(εT) corrected for permittivity ε and absolute temperature T does not depend on the temperature and nature of the solvent. As the temperature rises, the electrical conductivity of the dilute solutions of [Bmpy][NTf2] increases in direct proportion to the ratio of the permittivity to dipole dielectric relaxation time of the solvent

The work is performed in the framework of the development program Prioriyty 2030 of the Mendeleev University of Chemical Technology of Russia

Please cite this article as:

Karpunichkina I.A., Artemkina Yu.M., Plechkova N.V., et al. Electrical conductivity and association of 1-butyl-3-methylpyridinium bis{(trifluoromethyl)sulfonyl}amide in some polar solvents. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 3 (108), pp. 145--163. DOI: https://doi.org/10.18698/1812-3368-2023-3-145-163


[1] Aslanov L.A., Zakharov M.A., Abramycheva R.D. Ionnye zhidkosti v ryadu rastvoriteley [Ionic liquids in a range of solvents]. Moscow, MSU Publ., 2005.

[2] Rogers R.D., Seddon K.R., eds. Ionic liquids. Industrial applications to green chemistry. ACS, 2002.

[3] Plechkova N.V., Seddon K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, vol. 37, iss. 1, pp. 123--150. DOI: https://doi.org/10.1039/B006677J

[4] Torrecilla J.S. The role of ionic liquids in the chemical industry. Nova Science, 2012.

[5] Siriwardana A.I. Industrial applications of ionic liquids. In: Torriero A. (eds). Electrochemistry in Ionic Liquids. Cham, Springer, 2015, pp. 563--603. DOI https://doi.org/10.1007/978-3-319-15132-8_20

[6] Jain N., Kumar A., Chauhan S., et al. Chemical and biochemical transformations in ionic liquids. Tetrahedron, 2005, vol. 61, iss. 5, pp. 1015--1060. DOI: https://doi.org/10.1016/j.tet.2004.10.070

[7] Kustov L.M., Vasina T.V., Ksenofontov V.A. Ionic liquids as catalytic media. Rossiyskiy khimicheskiy zhurnal, 2004, vol. 48, no. 6, pp. 13--37 (in Russ.).

[8] Matsumiya M., Song Y., Tsuchida Y., et al. Recovery of platinum by solvent extraction and direct electrodeposition using ionic liquid. Sep. Purif. Technol., 2019, vol. 214, pp. 162--167. DOI: https://doi.org/10.1016/j.seppur.2018.06.018

[9] Ohno H. Electrochemical aspects of ionic liquids. Wiley, 2011.

[10] Qin J., Lan Q., Liu N., et al. A metal-free battery with pure ionic liquid electrolyte. iScience, 2019, vol. 15, pp. 16--27. DOI: https://doi.org/10.1016/j.isci.2019.04.010

[11] Liu H., Yu H. Ionic liquids for electrochemical energy storage devices applications. J. Mat. Sci. Technol., 2019, vol. 35, iss. 4, pp. 674--686. DOI: https://doi.org/10.1016/j.jmst.2018.10.007

[12] Bester-Rogac M., Hunger J., Stoppa A., et al. Molar conductivities and association constants of 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium tetrafluoroborate in methanol and DMSO. J. Chem. Eng. Data, 2010, vol. 55, iss. 5, pp. 1799--1803. DOI: https://doi.org/10.1021/je900531b

[13] Voroshylova I.V., Smaga S.R., Lukinova E.V., et al. Conductivity and association of imidazolium and pyridinium based ionic liquids in methanol. J. Mol. Liq., 2015, vol. 203, pp. 7--15. DOI: https://doi.org/10.1016/j.molliq.2014.12.028

[14] Bester-Rogac M., Stoppa A., Buchner R. Ion association of imidazolium ionic liquids in acetonitrile. J. Phys. Chem. B, 2014, vol. 118, no. 5, pp. 1426--1435. DOI: http://dx.doi.org/10.1021/jp412344a

[15] Kalugin O.N., Voroshylova I.V., Riabchunova A.V., et. al. Conductometric study of binary systems based on ionic liquids and acetonitrile in a wide concentration range. Electrochim. Acta, 2013, vol. 105, pp. 188--199. DOI: http://dx.doi.org/10.1016/j.electacta.2013.04.140

[16] Wang H., Wang J., Zhang S., et al. Ionic association of the ionic liquids [C4mim][BF4], [C4mim][PF6], and [Cn mim]Br in molecular solvents. Chem. Phys. Chem., 2009, vol. 10, iss. 14, pp. 2516--2523. DOI: https://doi.org/10.1002/cphc.200900438

[17] Jan R., Rather G.M., Bhat M.A. Association of ionic liquids in solution: conductivity studies of [BMIM][Cl] and [BMIM][PF6] in binary mixtures of acetonitrile + methanol. J Solution Chem., 2013, vol. 42, no. 4, pp. 738--745. DOI: https://doi.org/10.1007/s10953-013-9999-4

[18] Barman S., Datta B., Roy M.N. Investigation on solvation behavior of an ionic liquid (1-butyl-3- methylimidazolium chloride) with the manifestation of ion association prevailing in different pure solvent systems. Indian J. Adv. Chem. Sci., 2017, vol. 5, no. 3, pp. 160--175.

[19] Bester-Rogac M., Fedotova M.V., Kruchinin S.E., et al. Mobility and association of ions in aqueous solutions: the case of imidazolium based ionic liquids. Phys. Chem. Chem. Phys., 2016, vol. 18, iss. 41, pp. 28594--28605. DOI: https://doi.org/10.1039/c6cp05010g

[20] Shekaari H., Mousavari S.S. Conductometric studies of aqueous ionic liquids, 1-alkyl-3- methylimidazolium halides, solutions at T = 298,15--328,15 K. Fluid Phase Equilib., 2009, vol. 286, iss. 2, pp. 120--126. DOI: https://doi.org/10.1016/j.fluid.2009.08.011

[21] Borun A., Fernandez C., Bald A. Conductance studies of aqueous ionic liquids solutions [emim][BF4] and [bmim][BF4] at temperatures from (283.15 to 318.15) K. Int. J. Electrochem. Sci., 2015, vol. 10, no. 3, pp. 2120--2129.

[22] Borun A. Conductance and ionic association of selected imidazolium ionic liquids in various solvents: a review. J. Mol. Liq., 2019, vol. 276, pp. 214--224. DOI: https://doi.org/10.1016/j.molliq.2018.11.140

[23] Lee W.H., Wheaton R.J. Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 1. Relaxation terms. J. Chem. Soc. Faraday Trans. 2, 1978, vol. 74, pp. 743--766. DOI: https://doi.org/10.1039/F29787400743

[24] Lee W.H., Wheaton R.J. Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 2. Hydrodynamic terms and complete conductance equation. J. Chem. Soc. Faraday Trans. 2, 1978, vol. 74, pp. 1456--1482. DOI: https://doi.org/10.1039/F29787401456

[25] Lee W.H., Wheaton R.J. Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 3. Examination of new model and analysis of data for symmetrical electrolytes. J. Chem. Soc. Faraday Trans. 2, 1979, vol. 75, pp. 1128--1145. DOI: https://doi.org/10.1039/F29797501128

[26] Barthel J.M.G., Krienke H., Kunz W. Physical chemistry of electrolyte solutions. Springer, 1998.

[27] Fuoss R.M. Conductance-concentration function for the paired ion model. J. Phys. Chem., 1978, vol. 82, iss. 22, pp. 2427--2440. DOI: https://doi.org/10.1021/j100511a017

[28] Borun A, Bald A. Ionic association and conductance of [emim][BF4] and [bmim][BF4] in 1-butanol in a wide range of temperature. J. Chem. Thermodyn., 2016, vol. 96, pp. 175--180. DOI: https://doi.org/10.1016/j.jct.2015.12.029

[29] Barthel J., Feuerlein F., Neueder R., et al. Calibration of conductance cells at various temperatures. J. Solut. Chem., 1980, vol. 9, no. 3, pp. 209--219. DOI: https://doi.org/10.1007/BF00648327

[30] Bester-Rogac M., Habe D. Modern advances in electrical conductivity measurements of solutions. Acta Chim. Slov., 2006, vol. 53, no. 2, pp. 391--395.

[31] Stoppa A., Hunger J., Buchner R. Conductivities of binary mixtures of ionic liquids with polar solvents. J. Chem. Eng. Data, 2009, vol. 54, iss. 2, pp. 472--479. DOI: https://doi.org/10.1021/je800468h

[32] Kanabuko M., Harris K.R., Tsuchihashi N., et al. Temperature and pressure dependence of the electrical conductivity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. Fluid Phase Equilib., 2007, vol. 261, iss. 1-2, pp. 414--420. DOI: https://doi.org/10.1016/j.fluid.2007.06.019

[33] Arkhipova E.A., Ivanov A.S., Maslakov K.I., et. al. Effect of cation structure of tetraalkylammonium- and imidazolium-based ionic liquids on their conductivity. Electrochim. Acta, 2019, vol. 297, pp. 842--849. DOI: https://doi.org/10.1016/j.electacta.2018.12.002

[34] Fuoss R.M. Conductance-concentration function for associated symmetrical electrolytes. J. Phys. Chem., 1975, vol. 79, iss. 5, pp. 525--540. DOI: https://doi.org/10.1021/j100572a020

[35] Lopatin B.A. Konduktometriya [Conductometry]. Novosibirsk, SB AS SSSR, 1964.

[36] Evans D.F., Matesich M.A. The measurement and interpretation of electrolytic conductance. In: Techniques of Electrochemistry. Vol. 2. Wiley, 1973.

[37] Shcherbakov V.V. Accounting for the electrical capacitance of a solution in the analysis of the impedance of an electrochemical cell. Elektrokhimiya, 1998, vol. 14, no. 1, pp. 121--124 (in Russ.).

[38] Akhadov Ya.Yu. Dielektricheskie parametry chistykh zhidkostey [Dielectric parameters of pure liquids]. Moscow, MAI Publ., 1999.

[39] Barthel J., Wachter R., Gores H.-J. Temperature dependence of conductance of electrolytes in nonaqueous solutions. In: Conway B.E., Bockris J.O. (eds). Modern Aspects of Electrochemistry. Boston, Springer, 1979, pp. 1--79. DOI: https://doi.org/10.1007/978-1-4615-7455-2_1

[40] Chumak V.L., Maksimyuk M.R, Neshta T.V., et al. Designation of Lee --- Wheaton coefficients for the electrical conductivity of electrical differences in the MS Excel medium. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy [Eastern-European Journal of Enterprise Technologies], 2013, vol. 62, no. 5, pp. 59--63 (in Ukrainian).

[41] Robinson R.A., Stokes R.H. Electrolyte solutions. Dover, 2012.

[42] Shcherbakov V.V., Artemkina Yu.M. Limiting equivalent electrical conductivity of inorganic salt solutions and dielectric properties of a polar solvent. Russ. J. Inorg. Chem., 2013, vol. 58, no. 8, pp. 968--971. DOI: https://doi.org/10.1134/S0036023613080214

[43] Shcherbakov V.V., Artemkina Yu.M., Akimova I.A., et al. Dielectric characteristics, electrical conductivity and solvation of ions in electrolyte solutions. Materials, 2021, vol. 14, iss. 19, art. 5617. DOI: https://doi.org/10.3390/ma14195617

[44] Shcherbakov V.V., Ermakov V.I., Artemkina Yu.M. Dielectric characteristics of water and electric conductivity of aqueous electrolytes. Russ. J. Electrochem., 2017, vol. 53, no. 12, pp. 1301--1306. DOI: https://doi.org/10.1134/S1023193517120102

[45] Dote J., Kivelson D., Schwartz R.N. A molecular quasi-hydrodynamic free-space model for molecular rotational relaxation in liquids. J. Phys. Chem., 1981, vol. 85, iss. 15, pp. 2169--2180. DOI: https://doi.org/10.1021/j150615a007

[46] Brummer S.B., Hills G.J. Kinetics of ionic conductance. Part 1. Energies of activation and the constant volume principle. Trans. Faraday Soc., 1961, vol. 57, pp. 1816--1822. DOI: https://doi.org/10.1039/TF9615701816

[47] Hefter G., Buchner R. Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions. Pure Appl. Chem., 2020, vol. 92, no. 10, pp. 1595--1609. DOI: https://doi.org/10.1515/pac-2019-1011