ЭПР-исследование кинетики распада свободных радикалов облученной сахарозы
Авторы: Меджидов И.М., Полякова И.В., Горбатов С.А., Петрухина Д.И., Шишко В.И., Тхорик О.В., Харламов В.А. | Опубликовано: 26.08.2023 |
Опубликовано в выпуске: #4(109)/2023 | |
DOI: 10.18698/1812-3368-2023-4-141-158 | |
Раздел: Химия | Рубрика: Физическая химия | |
Ключевые слова: ЭПР-спектрометрия, свободный радикал, сахароза, интенсивность сигнала, дозиметрия |
Аннотация
Спектрометрия на основе электронного парамагнитного резонанса (ЭПР) позволяет исследовать образование свободных радикалов в процессе передачи энергии объекту исследования. Кинетика распада свободных радикалов --- неотъемлемая часть исследования, так как указанное явление напрямую препятствует целям точной идентификации факта облучения и дальнейшей дозиметрии с помощью ЭПР-спектрометрии. В настоящей работе исследована временная зависимость интенсивности и характеристик ЭПР-сигнала аналитической сахарозы, облученной гамма-квантами в дозах 0,3...9 кГр. Показано, что облученная сахароза дает стабильный ЭПР-пик даже спустя 60 сут. Зарегистрировано изменение спектральных характеристик сигнала в первые 23 ч после облучения. Интенсивность сигнала имеет тенденцию роста в первые 72 ч после облучения для образца с дозой облучения 300 Гр и 48 ч для образца с дозой 1000 Гр. Зависимость интенсивности сигнала от поглощенной дозы имеет прямолинейный характер в диапазоне исследованных доз. Значение g-фактора в точке пересечения контура производной с нулевой линией равно 2,013. По полученным данным можно предположить, что сахароза (сахар) является одним из лучших кандидатов среди твердых радиационно-чувствительных материалов для идентификации факта облучения с помощью ЭПР-спектрометрии
Просьба ссылаться на эту статью следующим образом:
Меджидов И.М., Полякова И.В., Горбатов С.А. и др. ЭПР-исследование кинетики распада свободных радикалов облученной сахарозы. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2023, № 4 (109), с. 141--158. DOI: https://doi.org/10.18698/1812-3368-2023-4-141-158
Литература
[1] Trivedi A., Greenstock C.L. Use of sugars and hair for ESR emergency dosimetry. Appl. Radiat. Isot., 1993, vol. 44, iss. 1-2, pp. 85--90. DOI: https://doi.org/10.1016/0969-8043(93)90201-K
[2] Desrosiers M., Wadley S. Time dependence of the radiation-induced EPR signal in sucrose. Radiat. Prot. Dosimetry, 2006, vol. 118, iss. 4, pp. 479--481. DOI: https://doi.org/10.1093/rpd/nci377
[3] Karakirova Y., Lund E., Yordanov N.D. EPR and UV investigation of sucrose irradiated with nitrogen ions and gamma-rays. Radiat. Meas., 2008, vol. 43, iss. 8, pp. 1337--1342. DOI: https://doi.org/10.1016/j.radmeas.2007.10.048
[4] Karakirova Y., Yordanov N.D., De Cooman H., et al. Dosimetric characteristics of different types of saccharides: an EPR and UV spectrometric study. Radiat. Phys. Chem., 2010, vol. 79, iss. 5, pp. 654--659. DOI: https://doi.org/10.1016/j.radphyschem.2009.12.003
[5] Peimel-Stuglik Z., Fabisiak S. Sucrose as double-signal high-dose dosimeter for ionizing radiation. Radiat. Phys. Chem., 2009, vol. 78, iss. 7-8, pp. 449--452. DOI: https://doi.org/10.1016/j.radphyschem.2009.04.007
[6] Karakirova Y., Yordanov N. About nonlinear response of SS/EPR dosimetry in high dose region (20--80 kGy). Radiat. Phys. Chem., 2019, vol. 159, pp. 12--16. DOI: https://doi.org/10.1016/j.radphyschem.2019.02.036
[7] Herve M.L., Trompier F., Tikunov D.D., et al. Study of materials for mixed field dosimetry by EPR spectroscopy. Radiat. Prot. Dosimetry, 2006, vol. 120, iss. 1-4, pp. 205--209. DOI: https://doi.org/10.1093/rpd/nci532
[8] Piroonpan T., Katemake P., Panritdam E., et al. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses. Radiat. Phys. Chem., 2017, vol. 141, pp. 57--65. DOI: https://doi.org/10.1016/j.radphyschem.2017.06.001
[9] Marzougui K., Hamzaoui A.H., Farah K., et al. Electrical conductivity study of gamma-irradiated table sugar for high-dose dosimetry. Radiat. Meas., 2008, vol. 43, iss. 7, pp. 1254--1257. DOI: https://doi.org/10.1016/j.radmeas.2008.05.009
[10] Karakirova Y., Mladenova R. New materials based on sucrose for EPR spectroscopic study. SSRN, 2022. DOI: https://doi.org/10.2139/ssrn.3999048
[11] Karakirova Y., Yordanova V. Optimizing the size of cylindrical sucrose solid state/EPR dosimeters for ionizing radiation. Radiat. Phys. Chem., 2021, vol. 184, art. 109469. DOI: https://doi.org/10.1016/j.radphyschem.2021.109469
[12] Karakirova Y., Yordanov N.D. Time dependence of the EPR and optical spectra of irradiated crystal sugar. Radiat. Phys. Chem., 2020, vol. 168, art. 108569. DOI: https://doi.org/10.1016/j.radphyschem.2019.108569
[13] Georgieva E.R., Georgieva E.R., Pardi L., et al. High-field/high-frequency EPR study on stable free radicals formed in sucrose by gamma-irradiation. Free Radic. Res., 2006, vol. 40, iss. 6, pp. 553--563. DOI: https://doi.org/10.1080/10715760500489558
[14] Ding Y., Jiao L., Zhang W., et al. Research on EPR measurement methods of sucrose used in radiation accident dose reconstruction. Radiat. Prot. Dosimetry, 2010, vol. 138, iss. 4, pp. 393--396. DOI: https://doi.org/10.1093/rpd/ncp270
[15] Marzougui K., Soliman Y.S., Farah K., et al. EPR study of table sugar rod and powder as high dose dosimeters. Radiat. Meas., 2012, vol. 47, iss. 10, pp. 988--991. DOI: https://doi.org/10.1016/j.radmeas.2012.08.007
[16] Vrielinck H., Kusakovskij J., Vanhaelewyn G., et al. Understanding the dosimetric powder EPR spectrum of sucrose by identification of the stable radiation-induced radicals. Radiat. Prot. Dosimetry, 2014, vol. 159, iss. 1-4, pp. 118--124. DOI: https://doi.org/10.1093/rpd/ncu168
[17] Karakirova Y., Yordanov N.D. EPR investigation of mix of sucrose and ascorbic acid irradiated with γ-rays. Appl. Magn. Reson., 2020, vol. 51, no. 9-10, pp. 1041--1047. DOI: https://doi.org/10.1007/s00723-020-01244-8
[18] Hayes R.B., Abdelrahman F.M. Low level EPR dosimetry of a commercial sugar. Appl. Radiat. Isot., 2020, vol. 157, art. 109038. DOI: https://doi.org/10.1016/j.apradiso.2020.109038
[19] Yordanov N.D., Gancheva V., Karakirova Y. Some recent developments of EPR dosimetry. In: Lund A., Shiotani M. (eds). EPR of Free Radicals in Solids II. Progress in Theoretical Chemistry and Physics, vol. 25. Dordrecht, Springer, 2012, pp. 311--343. DOI: https://doi.org/10.1007/978-94-007-4887-3_8
[20] Nakajima T., Otsuki T. Dosimetry for radiation emergencies: radiation-induced free radicals in sugar of various countries and the effect of pulverizing on the ESR signal. Int. J. Radiat. Appl. Instrumentation. Part A. Appl. Radiat. Isot., 1990, vol. 41, iss. 4, pp. 359--365. DOI: https://doi.org/10.1016/0883-2889(90)90144-6
[21] Fattibene P., Duckworth T.L., Desrosiers M.F. Critical evaluation of the sugar-EPR dosimetry system. Appl. Radiat. Isot., 1996, vol. 47, iss. 11-12, pp. 1375--1379. DOI: https://doi.org/10.1016/S0969-8043(96)00254-0
[22] Trompier F., Bassinet C., Wieser A., et al. Radiation-induced signals analysed by EPR spectrometry applied to fortuitous dosimetry. Ann. Ist. Super. Sanita, 2009, vol. 45, no. 3, pp. 287--296.
[23] Mikou M., Ghosne N., El Baydaoui R., et al. Performance characteristics of the EPR dosimetry system with table sugar in radiotherapy applications. Appl. Radiat. Isot., 2015, vol. 99, pp. 1--4. DOI: https://doi.org/10.1016/j.apradiso.2015.02.010
[24] Da Costa Z.M., Pontuschka W.M., Campos L.L. A comparative study based on dosimetric properties of different sugars. Appl. Radiat. Isot., 2005, vol. 62, iss. 2, pp. 331--336. DOI: https://doi.org/10.1016/j.apradiso.2004.08.028
[25] Yordanov N., Gancheva V., Georgieva E. EPR and UV spectroscopic study of table sugar as a high-dose dosimeter. Radiat. Phys. Chem., 2002, vol. 65, iss. 3, pp. 269--276. DOI: https://doi.org/10.1016/S0969-806X(02)00210-4
[26] De Cooman H., Keysabyl J., Kusakovskij J., et al. Dominant stable radicals in irradiated sucrose: g tensors and contribution to the powder electron paramagnetic resonance spectrum. J. Phys. Chem. B, 2013, vol. 117, iss. 24, pp. 7169--7178. DOI: https://doi.org/10.1021/jp400053h
[27] Ahn J.-J., Akram K., Kwon J.-H. Electron spin resonance analyses of grinding- and radiation-induced signals in raw and refined sugars. Food Anal. Methods, 2012, vol. 5, no. 5, pp. 1196--1204. DOI: https://doi.org/10.1007/s12161-012-9364-z
[28] Fukui K., Ito T., Tada M., et al. Solution-state dynamics of sugar-connected spin probes in sucrose solution as studied by multiband (L-, X-, and W-band) electron paramagnetic resonance. J. Magn. Reson., 2003, vol. 163, iss. 1, pp. 174--181. DOI: https://doi.org/10.1016/S1090-7807(03)00174-5
[29] Konov K.B., Leonov D.V., Isaev N.P., et al. Membrane--sugar interactions probed by pulsed electron paramagnetic resonance of spin labels. J. Phys. Chem. B, 2015, vol. 119, iss. 32, pp. 10261--10266. DOI: https://doi.org/10.1021/acs.jpcb.5b06864
[30] Silveira F.A.M., Baffa O. Lyoluminescence and ESR measurements on alanine and sucrose dosimeters. Appl. Radiat. Isot., 1995, vol. 46, iss. 8, pp. 827--830. DOI: https://doi.org/10.1016/0969-8043(95)00016-7
[31] Tchen A., Greenstock C.L., Trivedi A. The use of sugar pellets in ESR dosimetry. Radiat. Prot. Dosimetry, 1993, vol. 46, iss. 2, pp. 119--121. DOI: https://doi.org/10.1093/oxfordjournals.rpd.a081665
[32] Azorin J., Gutierrez A., Munoz E., et al. Correlation of ESR with lyoluminescence dosimetry using some sugars. Int. J. Radiat. Appl. Instrumentation. Part A. Appl. Radiat. Isot., 1989, vol. 40, iss. 10-12, pp. 871--873. DOI: https://doi.org/10.1016/0883-2889(89)90009-9
[33] Yordanov N.D., Karakirova Y. EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry. Radiat. Meas., 2007, vol. 42, iss. 3, pp. 347--351. DOI: https://doi.org/10.1016/j.radmeas.2006.10.004
[34] Box H.C., Budzinski E.E. A variation of the alkoxy radical. J. Chem. Phys., 1983, vol. 79, iss. 9, pp. 4142--4145. DOI: https://doi.org/10.1063/1.446363
[35] Sagstuen E., Lund A., Awadelkarim O., et al. Free radicals in X-irradiated single crystals of sucrose: a reexamination. J. Chem. Phys., 1986, vol. 90, iss. 22, pp. 5584--5588. DOI: https://doi.org/10.1021/j100280a022
[36] Vanhaelewyn G., Sadlo J., Callens F., et al. A decomposition study of the EPR spectrum of irradiated sucrose. Appl. Radiat. Isot., 2000, vol. 52, iss. 5, pp. 1221--1227. DOI: https://doi.org/10.1016/S0969-8043(00)000750
[37] De Cooman H., Pauwels E., Vrielinck H., et al. Radiation-induced defects in sucrose single crystals, revisited: a combined electron magnetic resonance and density functional theory study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, vol. 69, iss. 5, pp. 1372--1383. DOI: https://doi.org/10.1016/j.saa.2007.09.033
[38] De Cooman H., Pauwels E., Vrielinck H., et al. Oxidation and reduction products of X irradiation at 10 K in sucrose single crystals: radical identification by EPR, ENDOR, and DFT. J. Phys. Chem., 2010, vol. 114, iss. 1, pp. 666--674. DOI: https://doi.org/10.1021/jp909247z
[39] Karunakaran C., Balamurugan M. Electron paramagnetic resonance spectroscopy. In: Karunakaran C. (ed). Spin Resonance Spectroscopy. Principles and Applications. Elsevier, 2018, pp. 169--228. DOI: https://doi.org/10.1016/B978-0-12-813608-9.00004-6