EPR-Study the Decay Kinetics of Free Radicals in Irradiated Sucrose

Authors: Medzhidov I.M., Polyakova I.V., Gorbatov S.A., Petrukhina D.I., Shishko V.I., Tkhorik O.V., Kharlamov V.A.  Published: 26.08.2023
Published in issue: #4(109)/2023  
DOI: 10.18698/1812-3368-2023-4-141-158

Category: Chemistry | Chapter: Physical Chemistry  
Keywords: EPR spectrometry, free radical, sucrose, signal intensity, dosimetry


Electron paramagnetic resonance (EPR) spectrometry makes it possible to study the formation of free radicals during the transfer of energy to the object. The decay kinetics of free radicals is an integral part of the study since this phenomenon directly interferes with the goals of accurate identification of the irradiation fact and dosimetry using EPR spectrometry. In this work, we have studied the time dependence of the intensity and characteristics of the EPR signal of analytical sucrose irradiated with gamma rays at doses from 0.3 to 9 kGy. It has been shown that irradiated sucrose gives a stable EPR peak after 60 days. A change in the spectral characteristics of the signal was recorded in the first 23 hours after irradiation. The signal intensity tends to increase in the first 72 hours after irradiation for a sample with an irradiation dose of 300 Gy and 48 hours for 1000 Gy. The dependence of the signal intensity on the absorbed dose is linear in the range of studied doses. The g-factor value at the intersection point of the derivative contour with the zero line is 2.013. Based on the data obtained, it can be assumed that sucrose (sugar) is one of the best candidates among solid radiation-sensitive materials for identifying the fact of irradiation using EPR spectrometry

Please cite this article in English as:

Medzhidov I.M., Polyakova I.V., Gorbatov S.A., et al. EPR-study the decay kinetics of free radicals in irradiated sucrose. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 4 (109), pp. 141--158 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-4-141-158


[1] Trivedi A., Greenstock C.L. Use of sugars and hair for ESR emergency dosimetry. Appl. Radiat. Isot., 1993, vol. 44, iss. 1-2, pp. 85--90. DOI: https://doi.org/10.1016/0969-8043(93)90201-K

[2] Desrosiers M., Wadley S. Time dependence of the radiation-induced EPR signal in sucrose. Radiat. Prot. Dosimetry, 2006, vol. 118, iss. 4, pp. 479--481. DOI: https://doi.org/10.1093/rpd/nci377

[3] Karakirova Y., Lund E., Yordanov N.D. EPR and UV investigation of sucrose irradiated with nitrogen ions and gamma-rays. Radiat. Meas., 2008, vol. 43, iss. 8, pp. 1337--1342. DOI: https://doi.org/10.1016/j.radmeas.2007.10.048

[4] Karakirova Y., Yordanov N.D., De Cooman H., et al. Dosimetric characteristics of different types of saccharides: an EPR and UV spectrometric study. Radiat. Phys. Chem., 2010, vol. 79, iss. 5, pp. 654--659. DOI: https://doi.org/10.1016/j.radphyschem.2009.12.003

[5] Peimel-Stuglik Z., Fabisiak S. Sucrose as double-signal high-dose dosimeter for ionizing radiation. Radiat. Phys. Chem., 2009, vol. 78, iss. 7-8, pp. 449--452. DOI: https://doi.org/10.1016/j.radphyschem.2009.04.007

[6] Karakirova Y., Yordanov N. About nonlinear response of SS/EPR dosimetry in high dose region (20--80  kGy). Radiat. Phys. Chem., 2019, vol. 159, pp. 12--16. DOI: https://doi.org/10.1016/j.radphyschem.2019.02.036

[7] Herve M.L., Trompier F., Tikunov D.D., et al. Study of materials for mixed field dosimetry by EPR spectroscopy. Radiat. Prot. Dosimetry, 2006, vol. 120, iss. 1-4, pp. 205--209. DOI: https://doi.org/10.1093/rpd/nci532

[8] Piroonpan T., Katemake P., Panritdam E., et al. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses. Radiat. Phys. Chem., 2017, vol. 141, pp. 57--65. DOI: https://doi.org/10.1016/j.radphyschem.2017.06.001

[9] Marzougui K., Hamzaoui A.H., Farah K., et al. Electrical conductivity study of gamma-irradiated table sugar for high-dose dosimetry. Radiat. Meas., 2008, vol. 43, iss. 7, pp. 1254--1257. DOI: https://doi.org/10.1016/j.radmeas.2008.05.009

[10] Karakirova Y., Mladenova R. New materials based on sucrose for EPR spectroscopic study. SSRN, 2022. DOI: https://doi.org/10.2139/ssrn.3999048

[11] Karakirova Y., Yordanova V. Optimizing the size of cylindrical sucrose solid state/EPR dosimeters for ionizing radiation. Radiat. Phys. Chem., 2021, vol. 184, art. 109469. DOI: https://doi.org/10.1016/j.radphyschem.2021.109469

[12] Karakirova Y., Yordanov N.D. Time dependence of the EPR and optical spectra of irradiated crystal sugar. Radiat. Phys. Chem., 2020, vol. 168, art. 108569. DOI: https://doi.org/10.1016/j.radphyschem.2019.108569

[13] Georgieva E.R., Georgieva E.R., Pardi L., et al. High-field/high-frequency EPR study on stable free radicals formed in sucrose by gamma-irradiation. Free Radic. Res., 2006, vol. 40, iss. 6, pp. 553--563. DOI: https://doi.org/10.1080/10715760500489558

[14] Ding Y., Jiao L., Zhang W., et al. Research on EPR measurement methods of sucrose used in radiation accident dose reconstruction. Radiat. Prot. Dosimetry, 2010, vol. 138, iss. 4, pp. 393--396. DOI: https://doi.org/10.1093/rpd/ncp270

[15] Marzougui K., Soliman Y.S., Farah K., et al. EPR study of table sugar rod and powder as high dose dosimeters. Radiat. Meas., 2012, vol. 47, iss. 10, pp. 988--991. DOI: https://doi.org/10.1016/j.radmeas.2012.08.007

[16] Vrielinck H., Kusakovskij J., Vanhaelewyn G., et al. Understanding the dosimetric powder EPR spectrum of sucrose by identification of the stable radiation-induced radicals. Radiat. Prot. Dosimetry, 2014, vol. 159, iss. 1-4, pp. 118--124. DOI: https://doi.org/10.1093/rpd/ncu168

[17] Karakirova Y., Yordanov N.D. EPR investigation of mix of sucrose and ascorbic acid irradiated with γ-rays. Appl. Magn. Reson., 2020, vol. 51, no. 9-10, pp. 1041--1047. DOI: https://doi.org/10.1007/s00723-020-01244-8

[18] Hayes R.B., Abdelrahman F.M. Low level EPR dosimetry of a commercial sugar. Appl. Radiat. Isot., 2020, vol. 157, art. 109038. DOI: https://doi.org/10.1016/j.apradiso.2020.109038

[19] Yordanov N.D., Gancheva V., Karakirova Y. Some recent developments of EPR dosimetry. In: Lund A., Shiotani M. (eds). EPR of Free Radicals in Solids II. Progress in Theoretical Chemistry and Physics, vol. 25. Dordrecht, Springer, 2012, pp. 311--343. DOI: https://doi.org/10.1007/978-94-007-4887-3_8

[20] Nakajima T., Otsuki T. Dosimetry for radiation emergencies: radiation-induced free radicals in sugar of various countries and the effect of pulverizing on the ESR signal. Int. J. Radiat. Appl. Instrumentation. Part A. Appl. Radiat. Isot., 1990, vol. 41, iss. 4, pp. 359--365. DOI: https://doi.org/10.1016/0883-2889(90)90144-6

[21] Fattibene P., Duckworth T.L., Desrosiers M.F. Critical evaluation of the sugar-EPR dosimetry system. Appl. Radiat. Isot., 1996, vol. 47, iss. 11-12, pp. 1375--1379. DOI: https://doi.org/10.1016/S0969-8043(96)00254-0

[22] Trompier F., Bassinet C., Wieser A., et al. Radiation-induced signals analysed by EPR spectrometry applied to fortuitous dosimetry. Ann. Ist. Super. Sanita, 2009, vol. 45, no. 3, pp. 287--296.

[23] Mikou M., Ghosne N., El Baydaoui R., et al. Performance characteristics of the EPR dosimetry system with table sugar in radiotherapy applications. Appl. Radiat. Isot., 2015, vol. 99, pp. 1--4. DOI: https://doi.org/10.1016/j.apradiso.2015.02.010

[24] Da Costa Z.M., Pontuschka W.M., Campos L.L. A comparative study based on dosimetric properties of different sugars. Appl. Radiat. Isot., 2005, vol. 62, iss. 2, pp. 331--336. DOI: https://doi.org/10.1016/j.apradiso.2004.08.028

[25] Yordanov N., Gancheva V., Georgieva E. EPR and UV spectroscopic study of table sugar as a high-dose dosimeter. Radiat. Phys. Chem., 2002, vol. 65, iss. 3, pp. 269--276. DOI: https://doi.org/10.1016/S0969-806X(02)00210-4

[26] De Cooman H., Keysabyl J., Kusakovskij J., et al. Dominant stable radicals in irradiated sucrose: g tensors and contribution to the powder electron paramagnetic resonance spectrum. J. Phys. Chem. B, 2013, vol. 117, iss. 24, pp. 7169--7178. DOI: https://doi.org/10.1021/jp400053h

[27] Ahn J.-J., Akram K., Kwon J.-H. Electron spin resonance analyses of grinding- and radiation-induced signals in raw and refined sugars. Food Anal. Methods, 2012, vol. 5, no. 5, pp. 1196--1204. DOI: https://doi.org/10.1007/s12161-012-9364-z

[28] Fukui K., Ito T., Tada M., et al. Solution-state dynamics of sugar-connected spin probes in sucrose solution as studied by multiband (L-, X-, and W-band) electron paramagnetic resonance. J. Magn. Reson., 2003, vol. 163, iss. 1, pp. 174--181. DOI: https://doi.org/10.1016/S1090-7807(03)00174-5

[29] Konov K.B., Leonov D.V., Isaev N.P., et al. Membrane--sugar interactions probed by pulsed electron paramagnetic resonance of spin labels. J. Phys. Chem. B, 2015, vol. 119, iss. 32, pp. 10261--10266. DOI: https://doi.org/10.1021/acs.jpcb.5b06864

[30] Silveira F.A.M., Baffa O. Lyoluminescence and ESR measurements on alanine and sucrose dosimeters. Appl. Radiat. Isot., 1995, vol. 46, iss. 8, pp. 827--830. DOI: https://doi.org/10.1016/0969-8043(95)00016-7

[31] Tchen A., Greenstock C.L., Trivedi A. The use of sugar pellets in ESR dosimetry. Radiat. Prot. Dosimetry, 1993, vol. 46, iss. 2, pp. 119--121. DOI: https://doi.org/10.1093/oxfordjournals.rpd.a081665

[32] Azorin J., Gutierrez A., Munoz E., et al. Correlation of ESR with lyoluminescence dosimetry using some sugars. Int. J. Radiat. Appl. Instrumentation. Part A. Appl. Radiat. Isot., 1989, vol. 40, iss. 10-12, pp. 871--873. DOI: https://doi.org/10.1016/0883-2889(89)90009-9

[33] Yordanov N.D., Karakirova Y. EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry. Radiat. Meas., 2007, vol. 42, iss. 3, pp. 347--351. DOI: https://doi.org/10.1016/j.radmeas.2006.10.004

[34] Box H.C., Budzinski E.E. A variation of the alkoxy radical. J. Chem. Phys., 1983, vol. 79, iss. 9, pp. 4142--4145. DOI: https://doi.org/10.1063/1.446363

[35] Sagstuen E., Lund A., Awadelkarim O., et al. Free radicals in X-irradiated single crystals of sucrose: a reexamination. J. Chem. Phys., 1986, vol. 90, iss. 22, pp. 5584--5588. DOI: https://doi.org/10.1021/j100280a022

[36] Vanhaelewyn G., Sadlo J., Callens F., et al. A decomposition study of the EPR spectrum of irradiated sucrose. Appl. Radiat. Isot., 2000, vol. 52, iss. 5, pp. 1221--1227. DOI: https://doi.org/10.1016/S0969-8043(00)000750

[37] De Cooman H., Pauwels E., Vrielinck H., et al. Radiation-induced defects in sucrose single crystals, revisited: a combined electron magnetic resonance and density functional theory study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, vol. 69, iss. 5, pp. 1372--1383. DOI: https://doi.org/10.1016/j.saa.2007.09.033

[38] De Cooman H., Pauwels E., Vrielinck H., et al. Oxidation and reduction products of X irradiation at 10 K in sucrose single crystals: radical identification by EPR, ENDOR, and DFT. J. Phys. Chem., 2010, vol. 114, iss. 1, pp. 666--674. DOI: https://doi.org/10.1021/jp909247z

[39] Karunakaran C., Balamurugan M. Electron paramagnetic resonance spectroscopy. In: Karunakaran C. (ed). Spin Resonance Spectroscopy. Principles and Applications. Elsevier, 2018, pp. 169--228. DOI: https://doi.org/10.1016/B978-0-12-813608-9.00004-6