Конечно-элементный метод решения трехмерных задач теории устойчивости упругих конструкций
Авторы: Димитриенко Ю.И., Богданов И.О. | Опубликовано: 06.12.2016 |
Опубликовано в выпуске: #6(69)/2016 | |
DOI: 10.18698/1812-3368-2016-6-73-92 | |
Раздел: Механика | Рубрика: Динамика, прочность машин, приборов и аппаратуры | |
Ключевые слова: трехмерные задачи теории устойчивости, вариационная постановка задачи теории устойчивости, метод конечного элемента, устойчивость пластины, критические нагрузки |
Рассмотрены трехмерные задачи теории устойчивости упругих конструкций. Использована тензорная постановка этого класса задач, предложенная ранее Ю.И. Димитриенко. Трехмерные задачи теории устойчивости упругих конструкций являются относительно мало исследованными, в отличие от двумерных задач теории устойчивости. В настоящее время численные методы их решения не известны. Сформулирована вариационная постановка задачи трехмерной теории устойчивости. На основе этой постановки предложен конечно-элементный метод решения задач теории устойчивости, который сводится к нахождению собственных значений системы линейных алгебраических уравнений с симметричной матрицей глобальной жесткости. Разработан программный модуль, реализующий предложенный конечно-элементный метод в рамках программного комплекса SMCM, разработанного в НОЦ "СИМПЛЕКС" МГТУ им. Н.Э. Баумана, с использованием CSIR-схемы хранения разряженных матриц и метода бисопряженных градиентов. Проведен тестовый расчет для задачи устойчивости прямоугольной пластины при продольном сжатии. Сравнение конечно-элементного решения этой задачи по трехмерной теории и теории пластин Тимошенко показало высокую точность разработанного численного метода при определении критических нагрузок. В то же время трехмерная теория позволяет установить более точные формы собственных функций потери устойчивости.
Литература
[1] Timoshenko S.P., Gere J.M. Theory of elastic stability. New York, Toronto, London: McGraw-Hill, 1961. 356 p.
[2] Болотин В.В. Неконсервативные задачи теории упругой устойчивости. М.: Гостехтеоретиздат, 1961. 339 с.
[3] Вольмир А.С. Устойчивость деформируемых систем. М.: Наука, 1967. 964 с.
[4] Григолюк Э.И., Чулков П.П. Устойчивость и колебания трехслойных оболочек. М.: Машиностроение, 1973. 215 с.
[5] Алфутов Н.А., Зиновьев П.А., Попов Б.Г. Расчет многослойных пластин и оболочек из композиционных материалов. М.: Машиностроение, 1980. 324 с.
[6] Пановко Я.Г., Губанова И.И. Устойчивость и колебания упругих систем: Современные концепции, ошибки и парадоксы. М.: Наука, 1979. 384 с.
[7] Iyengar N.G.R. Structural stability of columns and plates. New Delhi: Affiliated East-West Press, 1986. 284 p.
[8] Васильев В.В. Механика конструкций из композиционных материалов. М.: Машиностроение, 1988. 272 с.
[9] Bazant Z.P., Cedolin L. Stability of structures. Oxford: Oxford University Press, 1990. 316 p.
[10] Пикуль В.В. Современное состояние теории устойчивости оболочек // Вестник ДВО РАН. 2008. № 3. С. 3-9.
[11] Ванько В.И. Очерки по теории устойчивости элементов конструкций. М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. 220 с.
[12] Соломонов Ю.С., Георгиевский В.П., Недбай А.Я., Андрюшин В.А. Прикладные задачи механики композитных цилиндрических оболочек. М.: Физматлит, 2014. 408 с.
[13] Болотин В.В. О сведении трехмерных задач теории упругой устойчивости к одномерным и двумерным задачам // Проблемы устойчивости в строительной механике. 1965. С. 166-179.
[14] Гузь А.Н. Основы трехмерной теории устойчивости деформируемых тел. Киев: Вища школа, 1986. 512 с.
[15] Новожилов В.В. Основы нелинейной теории упругости. М.: УРСС, 2003. 208 с.
[16] Димитриенко Ю.И. Обобщенная трехмерная теория устойчивости упругих тел. Часть 3: Теория оболочек // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2014. № 2. C. 77-89.
[17] Димитриенко Ю.И. Механика сплошной среды. Т. 4. Основы механики твердого тела. М.: Изд-во МГТУ им. Н.Э. Баумана, 2013. 624 с.
[18] Димитриенко Ю.И. Теория устойчивости пластин, основанная на асимптотическом анализе уравнений теории устойчивости трехмерных упругих сред // Инженерный журнал: наука и инновации. 2015. Вып. 9. DOI: 10.18698/2308-6033-2015-9-1416 URL: http://engjournal.ru/catalog/mech/mdsb/1416.html
[19] Димитриенко Ю.И., Юрин Ю.В. Конечно-элементное моделирование напряженно-деформированного состояния горных пород с учетом ползучести // Математическое моделирование и численные методы. 2015. № 3. C. 101-118. DOI: 10.18698/2309-3684-2015-3-101118
[20] Сегерлинд Л. Применение метода конечных элементов. М.: Мир, 1979. 392 с.
[21] Прочность, жесткость, устойчивость элементов конструкций. Теория и практикум / М.А. Кузьмин, Д.Л. Лебедев, Б.Г. Попов. М.: Академкнига, 2008. 159 с.