Finite-Element Method for Three-Dimensional Problems of Elastic Structures Buckling Theory
Authors: Dimitrienko Yu.I., Bogdanov I.O. | Published: 06.12.2016 |
Published in issue: #6(69)/2016 | |
DOI: 10.18698/1812-3368-2016-6-73-92 | |
Category: Mechanics | Chapter: Dynamics, Strength of Machines, Instruments, and Equipment | |
Keywords: three-dimensional problems of buckling theory, variation statement of buckling theory, final-element method, plate buckling, critical loads |
The study tested the three-dimensional problems of elastic structures buckling theory. In the research we applied the tensor statement of these problems offered by Yu.I. Dimitrienko before. The three-dimensional problems of elastic structures buckling theory are studied less than the two-dimensional problems of buckling theory. Nowadays, numerical methods of their solution are not known. The work gives the variation statement of the three-dimensional problem of elastic structures buckling theory. According to this statement, we proposed the final-element method for solving the buckling problems which is reduced to finding the eigen values of the linear algebraic equations system with a global symmetric stiffness matrix. As a result, we developed the program module implementing the offered final-element method within the SMCM program complex developed in Scientific and Educational Center "SIMPLEX" at Bauman Moscow State Technical University with the use of the CSIR storage scheme of the sparse matrixes and a bi-conjugate gradient method. We carried out the test calculation for the rectangular plate buckling problem under the longitudinal compression. The comparison of the final-element solution of this problem according to the three-dimensional theory and Timoshenko plates theory has shown high precision of the developed numerical method when determining critical loads. At the same time, the three-dimensional theory allows for more exact forms of eigen functions of stability loss.
References
[1] Timoshenko S.P., Gere J.M. Theory of elastic stability. N.Y., Toronto, London, McGraw-Hill, 1961. 356 p.
[2] Bolotin V.V. Nekonservativnye zadachi teorii uprugoy ustoychivosti [Nonconservative problems of the theory of elastic stability]. Мoscow, Gostekhteoretizdat Publ., 1961. 339 p.
[3] Vol’mir A.S. Ustoychivost’ deformiruemykh system [Stability of deformable systems]. Moscow, Nauka Publ., 1967. 964 p.
[4] Grigolyuk E.I., Chulkov P.P. Ustoychivost’ i kolebaniya trekhsloynykh obolochek [Stability and fluctuations of three-layer covers]. Moscow, Mashinostroenie Publ., 1973. 215 p.
[5] Alfutov N.A., Zinoviev P.A., Popov B.G. Raschet mnogosloynykh plastin i obolochek iz kompozitsionnykh materialov [Calculation of multilayer composite plates and shells]. Мoscow, Мashinostroenie Publ., 1980. 324 p.
[6] Panovko Ya.A., Gubanova I.I. Ustoychivost’ i kolebaniya uprugikh sistem: Sovremennye kontseptsii, oshibki i paradoksy [Stability and fluctuations of elastic systems: Modern concepts, mistakes and paradoxes]. Moscow, Nauka Publ., 1979. 384 p.
[7] Iyengar N.G.R. Structural stability of columns and plates, New Delhi, Affiliated East-West Press, 1986. 284 p.
[8] Vasil’ev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov [Mechanics of composite structures]. Moscow, Mashinostroenie Publ., 1988. 272 p.
[9] Bazant Z.P., Cedolin L. Stability of structures. Oxford, Oxford University Press, 1990. 316 p.
[10] Pikul’ V.V. Current state of the theory of stability of covers. Vestn. DVO RAN [Bulletin of the Far Eastern Branch of the Russian Academy of Sciences], 2008, no. 3, pp. 3-9 (in Russ.).
[11] Van’ko V.I. Ocherki po teorii ustoychivosti elementov konstruktsiy [Sketches according to the theory of stability of elements of designs]. Moscow, MGTU im. N.E. Baumana Publ., 2014. 220 p.
[12] Solomonov Yu.S., Georgievskiy V.P., Nedbay A.Ya., Andryushin V.A. Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied problems of mechanics of composite cylindrical covers]. Moscow, Fizmatlit Publ., 2014. 408 p.
[13] Bolotin V.V. About data of three-dimensional tasks of the theory of elastic resistance to one-dimensional and two-dimensional tasks. Problemy ustoychivosti v stroitel’noy mekhanike [Stability problems in construction mechanics], 1965, pp. 166-179 (in Russ.).
[14] Guz’ A.N. Osnovy trekhmernoy teorii ustoychivosti deformiruemykh tel [Bases of the three-dimensional theory of stability of deformable bodies]. Kiev, Vishcha shkola Publ., 1986. 512 p.
[15] Novozhilov V.V. Osnovy nelineynoy teorii uprugosti [Bases of the nonlinear theory of elasticity]. Moscow, URSS Publ., 2003. 208 p.
[16] Dimitrienko Yu.I. Generalized three-dimensional theory of elastic bodies stability. Part 3. Theory of shell stability. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2014, no. 2, pp. 77-89 (in Russ.).
[17] Dimitrienko Yu.I. Mekhanika sploshnoy sredy [Continuum mechanics]. Vol. 4. Osnovy mekhaniki tverdogo tela [Fundamentals of solid mechanics]. Moscow, MGTU im. N.E. Baumana Publ., 2013. 624 p.
[18] Dimitrienko Yu.I. Theory of plates stability, based on asymptotic analysis of stability theory equations for three-dimensional elastic bodies. Jelektr. nauchno-tekh. izd. "Inzhenernyy zhurnal: nauka i innovacii" [El. Sc.-Tech. Publ. "Eng. J.: Science and Innovation"], 2015, iss. 9 (45). DOI: 10.18698/2308-6033-2015-9-1416 Available at: http://engjournal.ru/catalog/mech/mdsb/1416.html
[19] Dimitrienko Yu.I., Yurin Yu.V. Final and element modeling of the intense deformed condition of rocks taking into account creep. Matematicheskoe modelirovanie i chislennye metody [Mathematical modeling and numerical methods], 2015, no. 3, pp. 101-118. DOI: 10.18698/2309-3684-2015-3-101118
[20] Segerlind L. Applied finite element analysis. N.Y., John Wiley & Sons, 1984. 392 p.
[21] Kuz’min M.A., Lebedev D.L., Popov B.G. Prochnost’, zhestkost’, ustoychivost’ elementov konstruktsiy. Teoriya i praktikum [Strength, toughness, resistance of structural elements: Theory and practice]. Moscow, Akademkniga Publ., 2008. 159 p.