Биомеханика операции по исправлению воронкообразного дефекта грудной клетки - page 9

[2] Nuss D., Kelly R.E., Croitoru D.P., Katz M.E. A 10-year rewiew of minimally
invasive technique to the correction of pectus excavatum.
J. Pediatr. Surg.
, 1998,
no. 33, pp. 545–552.
[3] Kurutz M. Finite element modelling of human lumbar spine. In: Moratal D.
Finite element analysis. Ch. 9. InTech Publ., 2010, pp. 209–236. Available at:
-
of-human-lumbar-spine (accessed 01.04.2013).
[4] Pei Yeh Chang, Zhen-Yu Hsu, Da-Pan Chen, Jin-Yao Lai, Chao-Jan Wang.
Preliminary analysis of the forces on the thoracic cage of patients with pectus
excavatum after the Nuss procedure.
Clin. Biomech.
, 2008, no. 23, pp. 881–885.
[5] Vaziri A., Nayeb-Hashemi H., Akhavan-Tafti B. Computational model of rib
movement and its application in studying the effects of the age-related thoracic
cage calcification on respiratory system. Comput. Methods Biomech. Biomed. Eng.,
2010, vol. 13, no. 2, pp. 257–264.
[6] Nagasao T., Miуamoto J., Tamaki T., Ichihara K., Jiang H., Taguchi T. Stress
distribution on the thorax after the Nuss procedure for pectus excavatum results
in different patterns between adult and child patients.
J. Thorac. Cardiovasc. Surg.
,
2007, no. 134, pp. 1502–1507.
[7] Nagasao T., Noguchi M., Miyamoto J., Jiang H., Ding W., Shimizu Y. Dynamic
effect of the Nuss procedure on the spine in asymmetric pectus excavatum.
J. Thorac.
Cardiovasc. Surg.
, 2010, no. 140, pp. 1294–1299.
[8] Weber P.G., Huemmer H.P., Reingruber B. Forces to be overcome in correction of
pectus excavatum.
J. Thorac. Cardiovasc. Surg.
, 2006, no. 132, pp. 1369–1373.
[9] Niedbala A., Adams M., Boswell W.C., Considine J.M. Acquired thoracic scoliosis
following minimally invasive repair of pectus excavatum.
Am. Surg.
, 2003, no. 69,
pp. 530–533.
Статья поступила в редакцию 15.05.2013
Сергей Сергеевич Гаврюшин — д-р техн. наук, профессор, заведующий кафедрой
“Компьютерные системы автоматизации производства” МГТУ им. Н.Э. Баумана. Ав-
тор более 200 научных работ в области механики деформируемого твердого тела,
численных методов анализа инженерных задач, нелинейного поведения тонкостен-
ных конструкций, биомеханики.
МГТУ им. Н.Э. Баумана, 105005, Москва, 2-я Бауманская ул., д. 5.
S.S. Gavryushin — Dr. Sci. (Eng.), professor, head of “Computer Systems for Production
Automation” department of the Bauman Moscow State Technical University. Author of
more than 200 publications in the field of mechanics of deformable solids, numerical
methods to analyze engineering problems, nonlinear behavior of thin-walled structures,
biomechanics.
Bauman Moscow State Technical University, Vtoraya Baumanskaya ul., 5, Moscow,
105005 Russia.
Денис Алексеевич Грибов — cтарший научный сотрудник ЗАО “ПЕТРОХИМ ИНЖИ-
НИРИНГ”, аспирант МГТУ им. Н.Э. Баумана. Автор трех научных работ в области
численных методов анализа инженерных задач (МКЭ), биомеханики.
МГТУ им. Н.Э. Баумана, 105005, Москва, 2-я Бауманская ул., д. 5.
D.A. Gribov — senior researcher of JSC “PETROCHIM ENGINEERING”, post-graduate
of the Bauman Moscow State Technical University. Author of three publications in the
field of numerical methods to analyze engineering problems (finite element method),
biomechanics.
Bauman Moscow State Technical University, Vtoraya Baumanskaya ul., 5, Moscow,
105005 Russia.
104
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2013. № 4
1,2,3,4,5,6,7,8 9
Powered by FlippingBook