Численное решение задачи распознавания состава газовой смеси по результатам обработки спектров, зарегистрированных на фурье-спектрорадиометре - page 1

ФИЗИКА
УДК 551.508.951:681.785.574
А. Н. М о р о з о в, С. И. С в е т л и ч н ы й,
И. Л. Ф у ф у р и н
ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ
РАСПОЗНАВАНИЯ СОСТАВА ГАЗОВОЙ
СМЕСИ ПО РЕЗУЛЬТАТАМ ОБРАБОТКИ
СПЕКТРОВ, ЗАРЕГИСТРИРОВАННЫХ
НА ФУРЬЕ-СПЕКТРОРАДИОМЕТРЕ
Предложен алгоритм численного расчета многокомпонентных
газовых смесей, в том числе атмосферы, методом многомерного
прямого поиска. Выполнено сравнение результатов расчета и
полученных в ходе реальных экспериментов спектров, зарегистри-
рованных с помощью ИК фурье-спектрорадиометра.
Методика [1–4] определения концентраций компонентов газовых
смесей состоит в сравнении коэффициентов пропускания эксперимен-
тального спектра и референтного, заранее снятого в лабораторных
условиях с известными величинами концентрации, линейным разме-
ром среды, а также при температуре, одинаковой или близкой к тем-
пературе, при которой снимался экспериментальный спектр.
В данной работе рассматриваются многокомпонентные смеси не-
взаимодействующих газов, т.е. отсутствуют эффекты ассоциации, дис-
социации и иного химического взаимодействия. В этом случае опти-
ческая толщина — аддитивная величина [5]:
D
(
ν
) =
N
X
i
=1
D
i
(
ν
) =
N
X
i
=1
k
i
(
ν
)
c
i
l,
(1)
где
i
— номер компонента смеси;
N
— число компонент;
k
i
(
ν
)
— спек-
тральный коэффициент экстинкции данного вещества;
c
i
— концентра-
ция
i
-го компонента;
l
— характерная длина слоя поглощения.
Спектральный коэффициент пропускания связан с оптической тол-
щиной экспоненциальной зависимостью
τ
(
ν
) =
e
D
(
ν
)
,
(2)
и, следовательно, коэффициент пропускания смеси невзаимодейству-
ющих газов с учетом линейной зависимости оптической толщины от
интегральной концентрации (1) имеет вид
τ
Σ
(
c
1
, . . . , c
N
, ν
) =
N
Y
i
=1
(
τ
i
|
c
0
i
(
ν
))
c
i
c
0
i
,
(3)
где
c
i
— интегральная концентрация
i
-го вещества.
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2007. № 2
3
1 2,3,4,5,6,7,8,9,10,...11
Powered by FlippingBook