Optimal representation of multivariate functions or data in visualizable low-dimensional spaces - page 17

Mathematics and System Sciences, Chinese Academy of Sciences, for their
interest and the time they spent for discussion and checking the proofs of
Lemma and Theorems. Their advice and suggestions are extremely valuable
for improvement of the paper and helpful for the author to achieve some
unexpected results.
REFERENCES
1. K o l m o g o r o v A. N. On the representation of continuous functions of many
variables by superposition of continuous functions of one variable and addition //
Dokl. Akad. Nauk. SSSR. – 1957. – V. 114, №5. P. 953–956.
2. A r n o l d V. I. On functions of three variables // Dokl. Akad. Nauk. SSSR. – 1957.
– V. 114, №4. – P. 679–681.
3. P o n t r y a g i n L. S. Continuous Groups. – M.: Gosudarstv. Izdat. Tehn.-Teor.
Lit., 1954. – P. 92–93.
4. K a t o T. Perturbation Theory for Linear Operators. – N.Y.: Springer-Verlag, 1966.
– P. 275–276.
5. L j u s t e r n i k L. A., S o b o l e v V. I. Elements of Functional Analysis. – M.:
Nauka, 1965. – P. 450–461, 489–492.
6. L a n g S. Real and Functional Analysis. – N.Y.: Springer-Verlag, 1990. – P. 70–72.
7. G u a n Z h a o - Z h i. Lectures on Functinal Analysis. – Beijing: High Education
Press, 1958. – P. 143–149, 274–293.
8. B o u r b a k i N. Espaces Vectoriels Topologiques. – Paris: Hermann & Cie, 1955.
– P. 307–311.
9. Z e i d l e r E. Nonlinear Functional Analysis and Its Applications. – N.Y.:
Springer-Verlag, 1990. II. P. 255–262; III. – P. 603–605.
10. F i h t e n g o l t s G. M. Lectures on Differential and Integral Calculus. II. – M.:
Gosudarstv. Izdat. Tehn.-Teor. Lit., 1959. – P. 292–294.
11. Y o s i d a K. Functional Analysis. – Berlin: Springer-Verlag, 1965. – P. 86–88,
119–125.
12. B u t k o v s k i A. G., S o n g J. On construction of functional generator with
multiple variables // Energetics and Automation. – 1961. – № 2. – P. 153–160.
13. K o s t i u t s e n k o A. G., K r e i n S. G., S o b o l e v V. I. Linear operators
in Hilbert Spaces // Functional Analysis. – M.: Nauka, 1964. – P. 79–96.
14. B e a u z a m y B. Introduction to Banach Spaces and their Geometry. – Amsterdam–
N.Y.: North-Holland Publishing Co., 1982. – P. 175–204.
15. D i e s t e l J. Geometry of Banach Spaces-Selected Topics. – Berlin–N.Y.: Springer-
Verlag, 1975. – P. 29–94.
16. G o h b e r g I. T., K r e i n M. G. Introduction to Theory of Non-self-adjoint
Linear Operators. – M.: Nauka, 1965. – P. 153–160.
17. F a n K. Maximum properties and inequalities for the eigenvalues of completely
continuous operators // Proc. Nat. Acad. Sci. – 1951. – V. 33. – P. 760–766.
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2005. № 4
49
1...,7,8,9,10,11,12,13,14,15,16 18
Powered by FlippingBook