Background Image
Previous Page  16 / 17 Next Page
Information
Show Menu
Previous Page 16 / 17 Next Page
Page Background

REFERENCES

[1] Lax P.D. Hyperbolic Partial Differential Equations.

Amer. Math. Society

, Providence,

2006.

[2] Filinovskiy A.V. Stabilization and spectrum in the problems of wave propagation.

Qualitative properties of solutions to differential equations and related topics of

spectral analysis, ed. by I.V. Astashova, Moscow, UNITY-DANA Publ., 2012,

pp. 289–463, 647 p.

[3] Temnov A.N. Small vibrations of an ideal non-homogeneous self-gravitated fluid.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the

Bauman Moscow State Tech. Univ., Nat. Sci.], 2002, no. 2, pp. 25–35 (in Russ.).

[4] Krein S.G. Linear differential equations in a Banach space. Moscow, Nauka Publ.,

1967.

[5] Hille E., Phillips R.S. Functional analysis and semi-groups.

Amer. Math. Soc. Coll.

Publ., vol. 31. Providence, 1957.

[6] Nemytskiy V.V., Vainberg M.M., Gusarova R.S. Operator differential equations, Mat.

analiz. Itogi nauki, Moscow, VINITI Publ., 1966, pp. 165–235 (in Russ.).

[7] Vishik M.I. Cauchy problem for the equations with operator coefficients, mixed

boundary problem for the systems of differential equations and approximative method

of its solving.

Sb. Math.

, 1956, vol. 39, no. 1, pp. 51–148 (in Russ.).

[8] Vishik M.I., Ladyzhenskaya O.A. Boundary value problem for partial differential

equations and some classes of operator equations.

Uspekhi Mat. Nauk

[Russian

Mathematical Surveys], 1956, vol. 11, no. 6, pp. 41–97 (in Russ.).

[9] Ladyzhenskaya O.A. On the non-stationary operator equations and their applications

to linear problems of mathematical physics.

Sb. Math.

, 1958, vol. 45, no. 2, pp. 123–

158 (in Russ.).

[10] Krein M.G. On some questions concerned with the Lyapounov ideas in the stability

theory.

Uspekhi Mat. Nauk

[Russian Mathematical Surveys], 1948, vol. 3, no. 3,

pp. 166–169 (in Russ.).

[11] Filinovskiy A.V. Stabilization of solutions of the wave equation in domains with

non-compact boundaries.

Sb. Math.

, 1998, vol. 189, no. 8, pp. 141–160 (in Russ.).

[12] Filinovskiy A.V. Stabilization of solutions of the first mixed problem for Helmholtz

equation in the domains with star-shaped boundaries.

Vestn. Mosk. Gos. Tekh. Univ.

im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow State Tech. Univ.,

Nat. Sci.], 1999, no. 2, pp. 22–33 (in Russ.).

[13] Filinovskiy A.V. Estimates of solutions of the first mixed problemfor the wave

equation in domains with non-compact boundaries.

Sb. Math.

, 2002, vol. 193, no. 9,

pp. 107–138 (in Russ.).

[14] Gilbarg D., Trudinger N.S. Elliptic partial differential equations of second order.

Berlin–Heidelberg–New York–Tokyo, Springer-Verlag, 1983.

[15] Kato T. Perturbation theory for linear operators. Berlin–Heidelberg–New York–

Tokyo, Springer-Verlag, 1995.

[16] Muckenhaupt C.S. Almost periodic functions and vibrating systems.

J. Math. and

Phys.

, 1929, vol. 8, pp. 163–198.

[17] Riesz F., Szokefalvy-Nagy B. Lecons d’analyse fonctionelle. Budapest, Akademiai

Kiado, 1995.

[18] Sobolev S.L. On the almost-periodicity of solutions of the wave equation. P. I.

Dokl.

Akad. Nauk

, vol. 48, no. 8, 1945, pp. 570–573 (in Russ.).

[19] Sobolev S.L. On the almost-periodicity of solutions of the wave equation. P. II.

Dokl.

Akad. Nauk

, vol. 48, no. 9, 1945, pp. 646–648 (in Russ.).

[20] Wiener N. The Fourier integral and certain of its applications. Dover, 1933.

18

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 3