REFERENCES
[1] Lax P.D. Hyperbolic Partial Differential Equations.
Amer. Math. Society
, Providence,
2006.
[2] Filinovskiy A.V. Stabilization and spectrum in the problems of wave propagation.
Qualitative properties of solutions to differential equations and related topics of
spectral analysis, ed. by I.V. Astashova, Moscow, UNITY-DANA Publ., 2012,
pp. 289–463, 647 p.
[3] Temnov A.N. Small vibrations of an ideal non-homogeneous self-gravitated fluid.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki
[Herald of the
Bauman Moscow State Tech. Univ., Nat. Sci.], 2002, no. 2, pp. 25–35 (in Russ.).
[4] Krein S.G. Linear differential equations in a Banach space. Moscow, Nauka Publ.,
1967.
[5] Hille E., Phillips R.S. Functional analysis and semi-groups.
Amer. Math. Soc. Coll.
Publ., vol. 31. Providence, 1957.
[6] Nemytskiy V.V., Vainberg M.M., Gusarova R.S. Operator differential equations, Mat.
analiz. Itogi nauki, Moscow, VINITI Publ., 1966, pp. 165–235 (in Russ.).
[7] Vishik M.I. Cauchy problem for the equations with operator coefficients, mixed
boundary problem for the systems of differential equations and approximative method
of its solving.
Sb. Math.
, 1956, vol. 39, no. 1, pp. 51–148 (in Russ.).
[8] Vishik M.I., Ladyzhenskaya O.A. Boundary value problem for partial differential
equations and some classes of operator equations.
Uspekhi Mat. Nauk
[Russian
Mathematical Surveys], 1956, vol. 11, no. 6, pp. 41–97 (in Russ.).
[9] Ladyzhenskaya O.A. On the non-stationary operator equations and their applications
to linear problems of mathematical physics.
Sb. Math.
, 1958, vol. 45, no. 2, pp. 123–
158 (in Russ.).
[10] Krein M.G. On some questions concerned with the Lyapounov ideas in the stability
theory.
Uspekhi Mat. Nauk
[Russian Mathematical Surveys], 1948, vol. 3, no. 3,
pp. 166–169 (in Russ.).
[11] Filinovskiy A.V. Stabilization of solutions of the wave equation in domains with
non-compact boundaries.
Sb. Math.
, 1998, vol. 189, no. 8, pp. 141–160 (in Russ.).
[12] Filinovskiy A.V. Stabilization of solutions of the first mixed problem for Helmholtz
equation in the domains with star-shaped boundaries.
Vestn. Mosk. Gos. Tekh. Univ.
im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ.,
Nat. Sci.], 1999, no. 2, pp. 22–33 (in Russ.).
[13] Filinovskiy A.V. Estimates of solutions of the first mixed problemfor the wave
equation in domains with non-compact boundaries.
Sb. Math.
, 2002, vol. 193, no. 9,
pp. 107–138 (in Russ.).
[14] Gilbarg D., Trudinger N.S. Elliptic partial differential equations of second order.
Berlin–Heidelberg–New York–Tokyo, Springer-Verlag, 1983.
[15] Kato T. Perturbation theory for linear operators. Berlin–Heidelberg–New York–
Tokyo, Springer-Verlag, 1995.
[16] Muckenhaupt C.S. Almost periodic functions and vibrating systems.
J. Math. and
Phys.
, 1929, vol. 8, pp. 163–198.
[17] Riesz F., Szokefalvy-Nagy B. Lecons d’analyse fonctionelle. Budapest, Akademiai
Kiado, 1995.
[18] Sobolev S.L. On the almost-periodicity of solutions of the wave equation. P. I.
Dokl.
Akad. Nauk
, vol. 48, no. 8, 1945, pp. 570–573 (in Russ.).
[19] Sobolev S.L. On the almost-periodicity of solutions of the wave equation. P. II.
Dokl.
Akad. Nauk
, vol. 48, no. 9, 1945, pp. 646–648 (in Russ.).
[20] Wiener N. The Fourier integral and certain of its applications. Dover, 1933.
18
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 3