|

Integrated Approach to Studying Pigment Morphology and Distribution in the Algae Cell

Authors: Parshina E.Yu., Samoylenko A.A., Maksimov G.V., Yusipovich A.I., Lobakova E.S., He Y., Levin G.G. Published: 29.05.2024
Published in issue: #2(113)/2024  
DOI:

 
Category: Chemistry | Chapter: Bioorganic Chemistry  
Keywords: adsorption optical tomography, atomic force microscopy, algae, Haematococcus lacustris, Raman microscopy, laser interference microscopy

Abstract

Atomic force microscopy, laser interference microscopy, Raman microspectroscopy and optical absorption tomography are used to study morphology and distribution of the green microalga Haemotococcus lacustris cell structure. The paper shows that using Raman microspectroscopy makes it possible to identify position of separate cellular structures (chloroplasts), composition and conformation of the pigment molecules (carotenoids), atomic force microscopy, including the cell lateral and vertical size and laser interference microscopy, to determine the substance refraction indicator and consenquently the substance local concentration in a cell. This allows obtaining information about intracellular structures. Using the absorption optical tomography makes it possible to receive three-dimensional images of microalga Haemotococcus lacustris translucent cells, which have a rather complex structure, as well as to visualize the algae cell subcellular structures despite the light strong absorption inside the cell. Thus, integrated use of atomic force and laser interference microscopy, Raman microspectroscopy and absorption optical tomography allows significantly expanding research capabilities and obtaining detailed and comprehensive information about both the cell geometry and the subcellular structures distribution, as well as about their molecular composition and pigment conformation

The work was carried out with the support of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University "Molecular Technologies of Living Systems and Synthetic Biology". The sponsor was not involved in the development of the study, in the collection, analysis or interpretation of data; in the writing of the manuscript or in the decision to publish the results

Please cite this article in English as:

Parshina E.Yu., Samoylenko A.A., Maksimov G.V., et al. Integrated approach to studying pigment morphology and distribution in the algae cell. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2024, no. 2 (113), pp. 129--148 (in Russ.). EDN: NBOFMH

References

[1] Yusipovich A.I., Parshina E.Yu., Bayzhumanov A.A., et al. Use of a laser interference microscope for estimating fluctuations and the equivalent elastic constant of cell membranes. Instrum. Exp. Tech., 2021, vol. 64, no. 6, pp. 877--885. DOI: https://doi.org/10.1134/S0020441221060129

[2] Levin G.G. Contemporary methods of optical tomography and holography. Meas. Tech., 2005, vol. 48, no. 11, pp. 1103--1108. DOI: https://doi.org/10.1007/s11018-006-0028-5

[3] Yusipovich A.I., Parshina E.Yu., Brysgalova N.Yu., et al. Laser interference microscopy in erythrocyte study. J. Appl. Phys., 2009, vol. 105, iss. 10, art. 102037. DOI: https://doi.org/10.1063/1.3116609

[4] Yusipovich A.I., Berestovskaya Yu.Yu., Shutova V.V., et al. New possibilities for the study of microbiological objects by laser interference microscopy. Meas. Tech., 2012, vol. 55, no. 3, pp. 351--356. DOI: https://doi.org/10.1007/s11018-012-9963-5

[5] Yusipovich A.I., Zagubizhenko M.V., Levin G.G., et al. Laser interference microscopy of amphibian erythrocytes: impact of cell volume and refractive index. J. Microsc., 2011, vol. 244, iss. 3, pp. 223--229. DOI: https://doi.org/10.1111/j.1365-2818.2011.03516.x

[6] Yusipovich A.I., Cherkashin A.A., Verdiyan E.E., et al. Laser interference microscopy: a novel approach to the visualization of structural changes in myelin during the propagation of nerve impulses. Laser Phys. Lett., 2016, vol. 13, no. 8, art. 085601. DOI: https://doi.org/10.1088/1612-2011/13/8/085601

[7] Parshina E.Yu., Sarycheva A.S., Yusipovich A.I., et al. Combined Raman and atomic force microscopy study of hemoglobin distribution inside erythrocytes and nanoparticle localization on the erythrocyte surface. Laser Phys. Lett., 2013, vol. 10, no. 7, art. 075607. DOI: https://doi.org/10.1088/1612-2011/10/7/075607

[8] Parshina E.Yu., Yusipovich A.I., Brazhe A.R., et al. Heat damage of cytoskeleton in erythrocytes increases membrane roughness and cell rigidity. J. Biol. Phys., 2019, vol. 45, no. 4, pp. 367--377. DOI: https://doi.org/10.1007/s10867-019-09533-5

[9] Zhurina M.V., Kostrikina N.A., Parshina E.Yu., et al. Visualization of the extracellular polymeric matrix of Chromobacterium violaceum biofilms by microscopic methods. Microbiology, 2013, vol. 82, no. 4, pp. 517--524. DOI: https://doi.org/10.1134/S0026261713040164

[10] Parshina E.Yu., Yusipovich A.I., Platonova A.A., et al. Thermal inactivation of volume-sensitive K+,Cl-- cotransport and plasma membrane relief changes in human erythrocytes. Pflugers Arch. --- Eur. J. Physiol., 2013, vol. 465, no. 7, pp. 977--983. DOI: https://doi.org/10.1007/s00424-013-1221-4

[11] Mojzes P., Gao L., Ismagulova T., et al. Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. PNAS, 2020, vol. 117, no. 51, pp. 32722--32730. DOI: https://doi.org/10.1073/pnas.2005460117

[12] Solovchenko A., Khozin-Goldberg I., Selyakh I., et al. Phosphorus starvation and luxury uptake in green microalgae revisited. Algal Res., 2019, vol. 43, art. 101651. DOI: https://doi.org/10.1016/j.algal.2019.101651

[13] Yusipovich A.I., Novikov S.M., Kazakova T.A., et al. Peculiarities of studying an isolated neuron by the method of laser interference microscopy. Quantum Electron., 2006, vol. 36, no. 9, pp. 874--878. DOI: https://doi.org/10.1070/QE2006v036n09ABEH013408

[14] Fedorov D.A., Sidorenko S.V., Yusipovich A.I., et al. Nai+/Ki+ imbalance contributes to gene expression in endothelial cells exposed to elevated NaCl. Heliyon, 2021, vol. 7, iss. 9, art. e08088. DOI: https://doi.org/10.1016/j.heliyon.2021.e08088

[15] Wu Z., Sun Y., Matlock A., et al. SIMBA: scalable inversion in optical tomography using deep denoising priors. IEEE J. Sel. Top. Signal Process., 2020, vol. 14, iss. 6, pp. 1163--1175. DOI: https://doi.org/10.1109/JSTSP.2020.2999820

[16] Matlock A., Zhu J., Tian L. Multiple-scattering simulator-trained neural network for intensity diffraction tomography. Opt. Express, 2023, vol. 31, iss. 3, pp. 4094--4107. DOI: https://doi.org/10.1364/oe.477396

[17] Li J., Matlock A., Li Y., et al. High-speed in vitro intensity diffraction tomography. Adv. Photonics, 2019, vol. 1, iss. 6, art. 066004. DOI: https://doi.org/10.1117/1.AP.1.6.066004

[18] Li J., Sun J., Zhang J., et al. Three-dimensional optical diffraction tomographic microscopy with optimal frequency combination with partially coherent illuminations. arXiv:1803.01151. DOI: https://doi.org/10.48550/arXiv.1803.01151

[19] Zuo C., Sun J., Li J., et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Opt. Lasers Eng., 2020, vol. 128, art. 106003. DOI: https://doi.org/10.1016/j.optlaseng.2020.106003

[20] Li J., Chen Q., Zhang J., et al. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array. Opt. Lasers Eng., 2017, vol. 95, pp. 26--34. DOI: https://doi.org/10.1016/j.optlaseng.2017.03.010

[21] Soto J.M., Rodrigo J.A., Alieva T. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy. Opt. Express, 2017, vol. 25, iss. 14, pp. 15699--15712. DOI: https://doi.org/10.1364/oe.25.015699

[22] Hamano R., Mayama S., Umemura K. Localization analysis of intercellular materials of living diatom cells studied by tomographic phase microscopy. Appl. Phys. Lett., 2022, vol. 120, iss. 13, art. 133701. DOI: https://doi.org/10.1063/5.0086165

[23] Merola F., Memmolo P., Miccio L., et al. Phase contrast tomography at lab on chip scale by digital holography. Methods, 2018, vol. 136, pp. 108--115. DOI: https://doi.org/10.1016/j.ymeth.2018.01.003

[24] Jung J., Hong S.-J., Kim H.-B., et al. Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography. Sci. Rep., 2018, vol. 8, art. 6524. DOI: https://doi.org/10.1038/s41598-018-24393-0

[25] Shin H., Hong S.-J., Kim H., et al. Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and pepti-dome analysis. Bioresour. Technol., 2015, vol. 194, pp. 57--66. DOI: https://doi.org/10.1016/j.biortech.2015.07.002

[26] Kublanovskaya A., Baulina O., Chekanov K., et al. The microalga Haematococcus lacustris (Chlorophyceae) forms natural biofilms in supralittoral White Sea coastal rock ponds. Planta, 2020, vol. 252, no. 3, art. 37. DOI: https://doi.org/10.1007/s00425-020-03438-7

[27] Stanier R.Y., Kunisawa R., Mandel M., et al. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev., 1971, vol. 35, no. 2, pp. 171--205. DOI: https://doi.org/10.1128/br.35.2.171-205.1971

[28] Vishnyakov G.N., Levin G.G., Minaev V.L., et al. Investigation of the method of local optical tomography by differential projections. Opt. Spectrosc., 2018, vol. 125, no. 6, pp. 1065--1073. DOI: https://doi.org/10.1134/S0030400X18120226

[29] Levin G.G., Vishnyakov G.N. Opticheskaya tomografiya [Optical tomography]. Moscow, Radio i svyaz Publ., 1989.

[30] Minaev V.L., Yusipovich A.I. Use of an automated interference microscope in biological research. Meas. Tech., 2012, vol. 55, no. 7, pp. 839--844. DOI: https://doi.org/10.1007/s11018-012-0048-2

[31] Levin G.G., Vishnyakov G.N., Minaev V.L. Automated interference microscope for measurement of dynamic objects. Pribory i tekhnika eksperimenta, 2014, no. 1, pp. 79--84 (in Russ.). EDN: RTOVOT. DOI: https://doi.org/10.7868/S0032816214010066

[32] Darvin M.E., Gersonde I., Meinke M., et al. Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method. J. Phys. D: Appl. Phys, 2005, vol. 38, no. 15, art. 2696. DOI: https://doi.org/10.1088/0022-3727/38/15/023

[33] Baudelet P.-H., Ricochon G., Linder M., et al. A new insight into cell walls of Chlorophyta. Algal Res., 2017, vol. 25, pp. 333--371. DOI: https://doi.org/10.1016/j.algal.2017.04.008

[34] Pirutin S.K., Jia S., Yusipovich A.I., et al. Vibrational spectroscopy as a tool for bioanalytical and biomonitoring studies. Int. J. Mol. Sci., 2023, vol. 24, iss. 8, art. 6947. DOI: https://doi.org/10.3390/ijms24086947