|

The Development of Combustion Strategy in Improving the Performances of SI-PFI Engine Using E50 of Gasoline-Bioethanol Fuel Blend

Authors: Paloboran M., Syam H., Yahya M., Darmawang Published: 28.08.2021
Published in issue: #4(97)/2021  
DOI: 10.18698/1812-3368-2021-4-115-135

 
Category: Chemistry | Chapter: Bioorganic Chemistry  
Keywords: spark ignition engine, gasoline-bioethanol blend, Response Surface Methodology, combustion strategy, compression ratio

This research aims to improve the combustion performance of gasoline-bioethanol fuel blended in the ratio of 50:50 (E50) on the spark-ignition engine by employing a new combustion strategy. The Box Behnken Design of Response Surface Methodology and Non-Linear Programming was employed to optimize the performance of the engine and create some engine parameters. The performance of the engine consists of power, torque, thermal efficiency, fuel consumption, and the emission of CO and HC, while the engine and combustion parameters are compression ratio, ignition timing, and engine speed. A new combustion strategy will be applied in this study with a tiered mapping process for each engine parameter based on the MBT. The brake torque increased by 13.5 % while HC and CO emissions decreased by 15 % and 71 % respectively when the combustion strategy applied if compared o the pure gasoline in engine standard condition. Furthermore, the BSFC increased by 33 % while BTE decreased by 15 % towards the gasoline fuel. The non-linear programming applied in this study intended to figure out the best combination of the engine parameters in obtaining optimum engine performances. In the RSM analysis, the codes --1, 0, 1 represented 12, 12.5, and 13 of compression ratio, 16, 20, and 24 BTDC of ignition timing and 2000, 5000, and 8000 rpm of engine speed. Therefore, 20 BTDC of ignition timing and 13:1 of compression ratio is the optimum engine parameters used in gaining the optimal performance of the engine when E50 runs in SI-PFI engine of 150 cm3

The paper is supported by the Directorate General of Higher Education (DIKTI), the Ministry of Research, Technology and Higher Education through the 2018 DRPM grant with a contract number: 58/UN36.9/PL/2018, Date: February 15, 2018

References

[1] Manzetti S., Andersen O. A review of emission products from bioethanol and its blends with gasoline, background for new guidelines for emission control. Fuel, 2015, vol. 140, pp. 293--301. DOI: https://doi.org/10.1016/j.fuel.2014.09.101

[2] Amatuni L., Ottelin J., Steubing B., et al. Does car sharing reduce greenhouse gas emissions? Assessing the modal shift and lifetime shift rebound effects from a life cycle perspective. J. Clean. Product., 2000, vol. 266, art. 121869. DOI: https://doi.org/10.1016/j.jclepro.2020.121869

[3] Tibaquira J.E., Huertas J.I., Ospina S.O. The effect of using ethanol-gasoline blends on the mechanical, energy and environmental performance of in-use vehicles. Energies, 2018, vol. 11, no. 1, art. 221. DOI: https://doi.org/10.3390/en11010221

[4] Paloboran M., Sutantra I.N., Sudarmanta B. Performances and emissions characteristics of three main types composition of gasoline-bioethanol blended in spark ignition engines. IREME, 2016, vol. 10, no. 7, pp. 552--559. DOI: https://doi.org/10.15866/ireme.v10i7.9968

[5] Devold H. Oil and gas production handbook. An introduction to oil and gas production, transport, refining and petrochemical industry. Oslo, ABB Oil and Gas, 2013.

[6] Schifter I., Diaz L., Gomez J.P., et al. Combustion characterization in a single cylinder engine with mid-levels hydrated ethanol-gasoline blended fuels. Fuel, 2013, vol. 103, pp. 292--298. DOI: https://doi.org/10.1016/j.fuel.2012.06.002

[7] Vilchez J.J.G., Jochem P. Powertrain technologies and their impact on greenhouse gas emissions in key car markets. Transp. Res. D Transp. Environ., 2020, vol. 80, art. 102214. DOI: https://doi.org/10.1016/j.trd.2019.102214

[8] Balat M., Balat H., Oz C. Progress in bioethanol processing. Prog. Energy Combust. Sci., 2008, vol. 34, iss. 5, pp. 551--573. DOI: https://doi.org/10.1016/j.pecs.2007.11.001

[9] Balat M., Balat H. Recent trends in global production and utilization of bioethanol fuel. Appl. Energy, 2009, vol. 86, iss. 11, pp. 2273--2282. DOI: https://doi.org/10.1016/j.apenergy.2009.03.015

[10] Dimaratos A., Toumasatos Z., Triantafyllopoulos G., et al. Real-world gaseous and particle emissions of a bi-fuel gasoline/CNG Euro 6 passenger car. Transp. Res. D Transp. Environ., 2020, vol. 82, art. 102307. DOI: https://doi.org/10.1016/j.trd.2020.102307

[11] Subramaniam Y., Masron T.A., Azman N.H.N. Biofuels, environmental sustainability, and food security: a review of 51 countries. Energy Res. Soc. Sci, 2020, vol. 68, art. 101549. DOI: https://doi.org/10.1016/j.erss.2020.101549

[12] Paloboran M., Sutantra I.N., Sudarmanta B., et al. Suitable injection duration of pure ethanol fuel for motorcycle at a high compression ratio. Dyna, 2017, vol. 92, pp. 587--592. DOI: https://doi.org/10.6036/8272

[13] Paloboran M., Pamuji G.A., Sudarmanta B., et al. Suitable of high compression ratio, injection duration and ignition timing on CB150R engine for high performance and low emissions with pure bioethanol fuelled. Int. J. Chem. Chem. Eng. Syst., 2017, vol. 2, pp. 33--44.

[14] Paloboran M., Sutantra I.N., Sudarmanta B., et al. A strategy in adjustment of combustion parameters of SI-PFI engine with pure bioethanol fuelled for a high performance and low emission. WSEAS Trans. Environ. Develop. J., 2017, vol. 13, pp. 410--420.

[15] Setiawan A. Kajian eksperimental pengaruh etanol pada premium terhadap karakteristik pembakaran kondisi atmosferik dan bertekanan di motor Otto silinder tunggal sistem injeksi, PhD Thesis. Jakarta, Universitas Indonesia, 2012.

[16] Turkoz N., Erkus B., Karamangil M.I., et al. Experimental investigation of the effect of E85 on engine performance and emissions under various ignition timings. Fuel, 2014, vol. 115, pp. 826--832. DOI: https://doi.org/10.1016/j.fuel.2013.03.009

[17] Kato S., Hayashida T., Iida M. The influence of port fuel injection on combustion stability. Yamaha Motor Technical Review, 2008.

[18] El-Faroug M.O., Yan F., Luo M., et al. Spark ignition engine combustion, performance and emission products from hydrous ethanol and its blends with gasoline. Energies, 2016, vol. 9, no. 12, art. 984. DOI: https://doi.org/10.3390/en9120984

[19] Johansson B. Cycle to cycle variations in S.I. engines, the effects of fluid flow and gas composition in the vicinity of the spark plug on early combustion. SAE Transactions, 1996, vol. 105, sect. 3, pp. 2281--2296.

[20] Sayin C., Balki M.K. Effect of compression ratio on the emission, performance and combustion characteristics of a gasoline engine fuelled with iso-butanol/gasoline blends. Energy, 2015, vol. 82, pp. 550--555. DOI: https://doi.org/10.1016/j.energy.2015.01.064

[21] Balki M.K., Sayin C. The effect of compression ratio on the performance, emissions and combustion of an SI (spark ignition) engine fuelled with pure ethanol, methanol and unleaded gasoline. Energy, 2014, vol. 71, pp. 194--201. DOI: https://doi.org/10.1016/j.energy.2014.04.074

[22] Foong T.M., Morganti K.J., Brear M.J., et al. The octane numbers of ethanol blended with gasoline and its surrogates. Fuel, 2014, vol. 115, pp. 727--739. DOI: https://doi.org/10.1016/j.fuel.2013.07.105

[23] Jeuland N., Montagne X., Gautrot X. Potentiality of ethanol as a fuel for dedicated engine. Oil Gas Sci. Technol. Rev. IFP, 2004, vol. 59, no. 6, pp. 559--570. DOI: https://doi.org/10.2516/ogst:2004040

[24] da Silva R., Cataluna R., de Menezes E.W., et al. Effect of additives on the antiknock properties and Reid vapor pressure of gasoline. Fuel, 2005, vol. 84, iss. 7-8, pp. 951--959. DOI: https://doi.org/10.1016/j.fuel.2005.01.008

[25] Wang Z., Liu H., Reitz R.D. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci., 2017, vol. 61, pp. 78--112. DOI: https://doi.org/10.1016/j.pecs.2017.03.004

[26] Alagumalai A. Internal combustion engines: progress and prospects. Renew. Sust. Energ. Rev., 2014, vol. 38, pp. 561--571. DOI: https://doi.org/10.1016/j.rser.2014.06.014

[27] Heywood J.B. Internal combustion engine fundamentals. McGraw Hill Series, 1988.

[28] Wu C.-W., Chen R.-H., Pu J.-Y., et al. The influence of air-fuel ratio on engine performance and pollutant emission of an SI engine using ethanol-gasoline-blended fuels. Atmos. Environ., 2004, vol. 38, iss. 40, pp. 7093--7100. DOI: https://doi.org/10.1016/j.atmosenv.2004.01.058

[29] Masum B.M., Masjuki H.H., Kalam M.A., et al. Effect of ethanol-gasoline blend on NOx emission in SI engine. Renew. Sust. Energ. Rev., 2013, vol. 24, pp. 209--222. DOI: https://doi.org/10.1016/j.rser.2013.03.046

[30] Dahl C.S. Alternative fuels: Investigation on emission effects of alternative fuels. Norwegian Environment Agency, 2015.

[31] Clairotte M., Adam T.W., Zardini A.A., et al. Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline. Appl. Energy, 2013, vol. 102, pp. 44--54. DOI: https://doi.org/10.1016/j.apenergy.2012.08.010

[32] Chen R.-H., Chiang L.-B., Chen C.-N., et al. Cold-start emissions of an SI engine using ethanol-gasoline blended fuel. Appl. Therm. Eng., 2011, vol. 31, iss. 8-9, pp. 1463--1467. DOI: https://doi.org/10.1016/j.applthermaleng.2011.01.021

[33] Sayin C. The impact of varying spark timing at different octane numbers on the performance and emission characteristics in a gasoline engine. Fuel, 2012, vol. 97, pp. 856--861. DOI: https://doi.org/10.1016/j.fuel.2012.03.013

[34] Gong C., Li Z., Chen Y., et al. Influence of ignition timing on combustion and emissions of a spark-ignition methanol engine with added hydrogen under lean-burn conditions. Fuel, 2019, vol. 235, pp. 227--238. DOI: https://doi.org/10.1016/j.fuel.2018.07.097

[35] Binjuwair S., Alkudsi A. The effects of varying spark timing on the performance and emission characteristics of a gasoline engine: a study on Saudi Arabian RON91 and RON95. Fuel, 2016, vol. 180, pp. 558--564. DOI: https://doi.org/10.1016/j.fuel.2016.04.071

[36] Sehatpour M.H., Kazemi A., Sehatpou H.E. Evaluation of alternative fuels for light-duty vehicles in Iran using a multicriteria approach. Renew. Sust. Energ. Rev., 2017, vol. 72, pp. 295--310. DOI: https://doi.org/10.1016/j.rser.2017.01.067

[37] Masum B.M., Masjuki H.H., Kalam M.A., et al. Effect of alcohol-gasoline blends optimization on fuel properties, performance and emissions of a SI engine. J. Clean. Prod., 2015, vol. 86, pp. 230--237. DOI: https://doi.org/10.1016/j.jclepro.2014.08.032

[38] Elfasakhany A.A. Investigations on the effects of ethanol-methanol-gasoline blends in a spark-ignition engine: performance and emissions analysis. Eng. Sci. Technol. an Int. J., 2015, vol. 18, iss. 4, pp. 713--719. DOI: https://doi.org/10.1016/j.jestch.2015.05.003

[39] Anderson L.G. Effects of using renewable fuels on vehicle emissions. Renew. Sust. Energ. Rev., 2015, vol. 47, pp. 162--172. DOI: https://doi.org/10.1016/j.rser.2015.03.011

[40] Thakur A.K., Kaviti A.K., Mehra R., et al. Progress in performance analysis of ethanol-gasoline blends on SI engine. Renew. Sust. Energ. Rev., 2017, vol. 69, pp. 324--340. DOI: https://doi.org/10.1016/j.rser.2016.11.056

[41] Topgul T., Yucesa H.S., Cinar C., et al. The effects of ethanol-unleaded gasoline blends and ignition timing on engine performance and exhaust emissions. Renew. Energ., 2006, vol. 31, iss. 15, pp. 2534--2542. DOI: https://doi.org/10.1016/j.renene.2006.01.004

[42] Ongar B., Iliev I.K., Nikolic V., et al. The study and the mechanism of the nitrogen oxides formation in combustion of fossil fuels. Facta Universitatis, 2018, vol. 16, no. 2, pp. 273--283. DOI: https://doi.org/10.22190/FUME171114026O

[43] Phuangwongtrakul S., Wechsatol W., Sethaput T., et al. Experimental study on sparking ignition engine performance for optimal mixing ratio of ethanol-gasoline blended fuels. Appl. Therm. Eng., 2016, vol. 100, pp. 8691--879. DOI: https://doi.org/10.1016/j.applthermaleng.2016.02.084

[44] Green K.P. Ethanol and the environment. Report of American Enterprise Institute, 2008.

[45] Paul S., Sarkar B. An exploratory analysis of biofuel under the utopian environment. Fuel, 2019, vol. 262, art. 116508. DOI: https://doi.org/10.1016/j.fuel.2019.116508

[46] Chen Y., Liu A., Deng B., et al. The influences of ignition modes on the performances for a motorcycle single cylinder gasoline engine at lean burn operation: looking inside interaction between flame front and turbulence. Energy, 2019, vol. 179, pp. 528--541. DOI: https://doi.org/10.1016/j.energy.2019.05.001

[47] Sakthivel P., Subramanian K.A., Mathaia R. Effects of different compression ratios and spark timings on performance and emissions of a two-wheeler with 30 % ethanol-gasoline blend (E30). Fuel, 2020, vol. 277, art. 118113. DOI: https://doi.org/10.1016/j.fuel.2020.118113

[48] Mittal G., Burke S.M., Davies V.A., et al. Autoignition of ethanol in a rapid compression machine. Combust. Flame, 2014, vol. 161, iss. 5, pp. 1164--1171. DOI: https://doi.org/10.1016/j.combustflame.2013.11.005

[49] Yoon S.H., Lee C.S. Effect of undiluted bioethanol on combustion and emissions reduction in a SI engine at various charge air conditions. Fuel, 2012, vol. 97, pp. 887--890. DOI: https://doi.org/10.1016/j.fuel.2012.02.001

[50] Efemwenkiekie U.K., Oyedepo S.O., Idiku U.D., et al. Comparative analysis of a four stroke spark ignition engine performance using local ethanol and gasoline blends. Procedia Manuf., 2019, vol. 35, pp. 1079--1086. DOI: https://doi.org/10.1016/j.promfg.2019.06.060

[51] Uslu S., Celik M.B. Combustion and emission characteristics of isoamyl alcohol-gasoline blends in spark ignition engine. Fuel, 2020, vol. 262, art. 116496. DOI: https://doi.org/10.1016/j.fuel.2019.116496

[52] Gonca G., Cakir M., Sahin B. Performance characteristics and emission formations of a spark ignition (SI) engine fuelled with different gaseous fuels. Arab. J. Sci. Eng., 2018, vol. 43, no. 9, pp. 4487--4499. DOI: https://doi.org/10.1007/s13369-017-2906-3

[53] Wang X., Chen Z., Ni J., et al. The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine. Case Stud. Therm. Eng., 2015, vol. 6, pp. 147--154. DOI: https://doi.org/10.1016/j.csite.2015.09.007

[54] Costa R.C., Sodre J.R. Compression ratio effects on an ethanol/gasoline fuelled engine performance. Appl. Therm. Eng., 2011, vol. 31, iss. 2-3, pp. 278--283. DOI: https://doi.org/10.1016/j.applthermaleng.2010.09.007

[55] da Costa R.B.R., Filho F.A.R., Moreira T.A.A., et al. Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge prechamber torch ignition system in an SI engine fuelled with a gasoline-bioethanol blend. Energy, 2020, vol. 197, art. 117300. DOI: https://doi.org/10.1016/j.energy.2020.117300

[56] Simsek S., Uslu S. Experimental study of the performance and emissions characteristics of fusel oil/gasoline blends in spark ignited engine using response surface methodology. Fuel, 2020, vol. 277, art. 118182. DOI: https://doi.org/10.1016/j.fuel.2020.118182

[57] Chansauria P., Mandloi R.K. Effects of ethanol blends on performance of spark ignition engine --- a review. Mater. Today, 2018, vol. 5, iss. 2-1, pp. 4066--4077. DOI: https://doi.org/10.1016/j.matpr.2017.11.668

[58] Elfasakhany A. Gasoline engine fuelled with bioethanol-bioacetone-gasoline blends: performance and emissions exploration. Fuel, 2020, vol. 274, art. 117825. DOI: https://doi.org/10.1016/j.fuel.2020.117825

[59] Dogan B., Erol D., Yaman H., et al. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Appl. Therm. Eng., 2017, vol. 120, pp. 433--443. DOI: https://doi.org/10.1016/j.applthermaleng.2017.04.012

[60] Galloni E., Scala F., Fontana G. Influence of fuel bio-alcohol content on the performance of a turbocharged, PFI, spark-ignition engine. Energy, 2019, vol. 170, pp. 85--92. DOI: https://doi.org/10.1016/j.energy.2018.12.129

[61] Mourad M., Mahmoud K. Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends. Renew. Energy, 2019, vol. 143, pp. 762--771. DOI: https://doi.org/10.1016/j.renene.2019.05.064

[62] Paloboran M., Gani A.H., Saharuna, et al. Performance optimization of a spark ignition engine fueled with gasoline-bioethanol (E85) using RSM and non-linear programming approach. IREME, 2021, vol. 15, no. 2, pp. 67--78. DOI: https://doi.org/10.15866/ireme.v15i2.19798