Transition Metal Cations as Indicators of the Alkaloids Presence in a Test Sample Exposed to Stripping Voltammetry
Authors: Petrenko E.M., Semenova V.A. | Published: 11.03.2024 |
Published in issue: #1(112)/2024 | |
DOI: 10.18698/1812-3368-2024-1-104-117 | |
Category: Chemistry | Chapter: Electrochemistry | |
Keywords: stripping voltammetry, alkaloid identification, multisensors, electrochemical test system, "electronic tongue", "electronic nose" |
Abstract
A new electrochemical express-analysis method based on the multisensor stripping voltammetry was developed. The stripping voltammetry method is one of the most informative, but its implementation requires preliminary sample preparation, which consists of cleaning the sample from organic substances that affect the voltammogram appearance. This ability to change behavior of an electrochemical system containing cations of various metals was proposed to be used in analyzing the alkaloids. The proposed method made it possible with high reliability to identify alkaloids in the studied samples and to determine the informative signs characterizing their presence in the test sample. Besides, the test system composition was also optimized taking into account the detected substances specifics. The proposed method differs from the existing ones, because instead of the multiple indicator electrodes each responsible for a specific informative feature, a single planar electrode is used being immersed in the test solution, where the transition metal ions are introduced into the background electrolyte, as they are able to form complexes with the sample substances. Substances of the different chemical classes are determined by comparing a sample voltammogram with the electronic database. The method was implemented in a portable electroanalytical system in the "electronic tongue" and "electronic nose" formats
Please cite this article in English as:
Petrenko E.M., Semenova V.A. Transition metal cations as indicators of the alkaloids presence in a test sample exposed to stripping voltammetry. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2024, no. 1 (112), pp. 104--117 (in Russ.). EDN: GJMMJN
References
[1] Ganshin V.M., Fesenko A.V., Chebyshev A.V. Integrated monitoring systems for toxicological and environmental safety. Spetsialnaya tekhnika, 1998, no. 4-5, pp. 2--10 (in Russ.).
[2] Sistemy obnaruzheniya opasnykh veshchestv, rabotayushchikh na raznykh fizicheskikh printsipakh [Hazardous substance detection systems operating on different physical principles]. Moscow, BNTI Tekhnika dlya spetssluzhb Publ., 2009.
[3] Stitzel S.E., Aernecke M.J., Walt D.R. Artificial noses. Annu. Rev. Biomed. Eng., 2011, vol. 13, pp. 1--25. DOI: http://doi.org/10.1146/annurev-bioeng-071910-124633
[4] Persaud K., Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 1982, vol. 299, pp. 352--355. DOI: https://doi.org/10.1038/299352a0
[5] Gardner J., Bartlett P. Electronic noses. Principles and applications. Oxford Univ. Press, 1999.
[6] James D., Scott S.M., Ali Z., et al. Chemical sensors for electronic nose systems. Microchim. Acta, 2005, vol. 149, no. 1, pp. 1--17. DOI: http://doi.org/10.1007/s00604-004-0291-6
[7] Ganshin V.M., Fesenko A.V., Chebyshev A.V. From olfactory models to the "electronic nose". New features of parallel analytics. Spetsialnaya tekhnika, 1999, no. 1-2, pp. 2--11 (in Russ.).
[8] Dolgopolov N.V., Yablokov M.Yu. "Electronic nose" --- a new direction of the security industry. Mir i bezopasnost, 2007, no. 4, pp. 54--59 (in Russ.).
[9] Biolatto A., Grigioni G., Irurueta M., et al. Seasonal variation in the odour characteristics of whole milk powder. Food Chem., 2007, vol. 103, iss. 3, pp. 960--967. DOI: http://doi.org/10.1016/j.foodchem.2006.09.050
[10] Bhattacharya N., Tudu B., Jana A., et al. Preemptive identification of optimum fermentation time for black tea using electronic nose. Sens. Actuators B Chem., 2008, vol. 131, iss. 1, pp. 110--161. DOI: http://doi.org/10.1016/j.snb.2007.12.032
[11] El Barbri N., Llobet E., El Bari N., et al. Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat. Sensors, 2008, vol. 8, iss. 1, pp. 142--156. DOI: http://doi.org/10.3390/s8010142
[12] Dragonieri S., Schot R., Mertens B., et al. An electronic nose in the discrimination of patients with asthma and controls. J. Allergy Clin. Immunol., 2007, vol. 120, iss. 4, pp. 856--862. DOI: http://doi.org/10.1016/j.jaci.2007.05.043
[13] Siripatrawan U. Rapid differentiation between E. coli and Salmonella Typhimurium using metal oxide sensors integrated with pattern recognition. Sens. Actuators B Chem., 2008, vol. 133, iss. 2, pp. 414--419. DOI: http://doi.org/10.1016/j.snb.2008.02.046
[14] Zampolli S., Elmi I., Ahmed F., et al. An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens. Actuators B Chem., 2004, vol. 101, iss. 1-2, pp. 39--46. DOI: http://doi.org/10.1016/j.snb.2004.02.024
[15] Raman B., Meier D.C., Evju J.K., et al. Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments. Sens. Actuators B Chem., 2009, vol. 137, iss. 2, pp. 617--629. DOI: http://doi.org/10.1016/j.snb.2008.11.053
[16] Feng L., Musto C.J., Kemling J.W., et al. A colorimetric sensor array for identification of toxic gases below permissible exposure limits. Chem. Commun., 2010, iss. 12, vol. 46, pp. 2037--2039. DOI: http://doi.org/10.1039/b926848k
[17] Moore D.S. Instrumentation for trace detection of high explosives. Rev. Sci. Instrum., 2004, vol. 75, iss. 8, pp. 2499--2512. DOI: http://doi.org/10.1063/1.1771493
[18] Yinon J. Peer reviewed: detection of explosives by electronic noses. Anal. Chem., 2003, vol. 75, iss. 5, pp. 98А--105А. DOI: http://doi.org/10.1021/ac0312460
[19] Singh S. Sensors --- an effective approach for the detection of explosives. J. Hazard. Mater., 2007, vol. 144, iss. 1-2, pp. 15--28. DOI: http://doi.org/10.1016/j.jhazmat.2007.02.018
[20] Voiculescu I., Zaghloul M.E., McGill R.A., et al. Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons. IEEE Sens. J., 2005, vol. 5, iss. 4, pp. 641--647. DOI: http://doi.org/10.1109/JSEN.2005.851016
[21] Bencic-Nagale S., Sternfeld T., Walt D.R. Microbead chemical switches: an approach to detection of reactive organophosphate chemical warfare agent vapors. J. Am. Chem. Soc., 2006, vol. 128, iss. 15, pp. 5041--5048. DOI: http://doi.org/10.1021/ja057057b
[22] Song L., Ahn S., Walt D.R. Detecting biological warfare agents. Emerging Infect. Dis., 2005, vol. 11, no. 10, pp. 1629--1632. DOI: http://doi.org/10.3201/eid1110.050269
[23] Aernecke M.J., Walt D.R. Fiber-optic sensors for biological and chemical agent detection. In: Nano and Microsensors for Chemical and Biological Terrorism Surveil-lance. Royal Society of Chemistry, 2008, pp. 98--113.
[24] Janata J. Electrochemical sensors. Electrochemistry Encyclopedia. URL: https://knowledge.electrochem.org/encycl/art-s02-sensor.htm
[25] Stetter J.R., Penrose W.R. The electrochemical nose. Electrochemistry Encyclopedia. URL: https://knowledge.electrochem.org/encycl/art-n01-nose.htm
[26] Forster R.J., Regan F., Diamond D. Modeling of potentiometric electrode arrays for multicomponent analysis. Anal. Chem., 1991, vol. 63, iss. 9, pp. 876--882. DOI: http://doi.org/10.1021/ac00009a007
[27] Forster R.J., Diamond D. Nonlinear calibration of ion-selective electrode arrays for flow injection analysis. Anal. Chem., 1992, vol. 64, iss. 15, pp. 1721--1728. DOI: http://doi.org/10.1021/ac00039a017
[28] Sasaki Y., Kanai Y., Uchida H. Highly sensitive taste sensor with a new differential LAPS method. Sens. Actuators B Chem., 1995, vol. 25, iss. 1-3, pp. 819--822. DOI: https://doi.org/10.1016/0925-4005(95)85182-8