Ignition of hydrogen-air mixture near lower flammability limit
Authors: Ivanov M.F., Kiverin A.D., Smygalina A.Ye. | Published: 10.06.2013 |
Published in issue: #1(48)/2013 | |
DOI: | |
Category: Chemistry | |
Keywords: ignition, lower flammability limit, hydrogen safety, numerical simulation |
The initiation of the hydrogen-air mixture combustion near the lower flammability limit is analyzed using numerical simulation methods. Problems on ignition evolution and propagation of combustion waves in lean mixtures with homogeneous and inhomogeneous stirring are solved using the detailed models of chemical kinetics, which reproduce peculiarities of chain mechanism of ignition. It is shown that in case of the non-uniform concentration distribution, the reaction initiation is possible even if a hydrogen concentration in the mixture is lower than the lean flammability limit. A heat wave formed in this case can create conditions for initiation of a self-sustaining combustion wave in the less lean adjacent area.
References
[1] Mitigation of hydrogen hazards in severe accidents in nuclear power plants. IAEA-TECDOC-1661, IAEA, Vienna, 2011.
[2] Fernandez-Galisteo D., Sanchez A.L., Lilian A., Williams F.A. One-step reduced kinetics for lean hydrogen-air deflagration // Combust. Flame. – 2009. – Vol. 156. – P. 985–996.
[3] Иванов М.Ф., Киверин А.Д., Гальбурт В.А. Об одном способе ускорения перехода от дефлаграции к детонации в газообразных горючих смесях // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. // – 2008. – № 4. – C. 38–45.
[4] Иванов М.Ф., Киверин А.Д., Рыков Ю.В. Особенности распространения пламени в замкнутых объемах // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. – 2010. – № 1. – C. 21–38.
[5] Варнатц Ю., Маас У., Диббл Р. Горение. – М.: Физматлит, 2003. – 351 c.
[6] Mc Bride B.J., Gordon S., Reno M.A. Coefficients for calculating thermodynamic and transport properties of individual species // NASA Technical Memorandum 4513. – 1993. – 89 p.
[7] Белоцерковский О.М., Давыдов Ю.М. Метод крупных частиц в газовой динамике. Вычислительный эксперимент. – М.: Наука, 1982. – 392 с.
[8] Liberman M.A., Ivanov M.F., Peil O.E., Valiev D.M., Eriksson L.E. Numerical modeling of the propagating flame and knock occurrence in spark-ignition engines // Combust. Sci. and Tech. – 2005. – Vol. 177. – No 1. – P. 151–182.
[9] Liberman M.A., Ivanov M.F., Valiev D.M., Eriksson L.E. Hot spot formation by the propagating flame and the influence of EGR on knock occurrence in SI engines // Combust. Sci. and Tech. – 2006. – Vol. 178. – No. 9. – P. 1613–1647.
[10] Ivanov M.F., Kiverin A.D., Liberman M.A. Hydrogen-oxygen flame acceleration and transition to detonation inchannels with no-slip walls for a detailed chemical reaction model // Physical review E. – 2011. – Vol. 83. – P. 056313-1– 056313-16.
[11] Kagan L., Sivashinsky G. The transition from deflagration to detonation in thin channels // Combustion flame. – 2003. – Vol. 134. – P. 389–397.
[12] Liberman M.A., Ivanov M.F., Peil O.E., Valiev D.M., Eriksson L.E. Numerical studies of curved stationary flames in wide tubes // Combust. Theory and Modelling. – 2003. – Vol. 7. – P. 653–676.
[13] Oran E.S., Gamezo V.N. Origins of the deflagration-to-detonation transitionin gas-phase combustion // Combust. Flame. – 2007. – Vol. 148. – P. 4–47.
[14] Kassoy D.R., Kuehn J.A., Nabity M.W., Clarcke J.F. Detonation initiation on the microsecond time scale: DDTs // Comb. Theor. Modelling. – 2008. – Vol. 12. – No 6. – P. 1009–1047.
[15] Liberman M.A., Kiverin A.D., Ivanov M.F. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models // Physical reviewe E. – 2012. – Vol. 85. – P. 056312-1–056312-11.
[16] Гельфанд Б.Е., Попов О.Е., Чайванов Б.Б. Водород: параметры горения и взрыва. – М.: Физматлит. – 2008. – 288 с.
[17] Бохон Ю.А., Гальбурт В.А., Гостинцев Ю.А. и др. Развитие взрыва газовой смеси за ударными волнами / Препринт ИВТАН № 2-416. – М., 1998. –59 с.
[18] GRI-Mech 3.0/ http://www.me.berkeley.edu/gri_mech/version30/text30.html#cite
[19] Starik A.M., Titova N.S. Kinetics of detonation initiation in the supersonic flow of the H2.O2 (air) mixture in O2 molecule excitation by resonance laser radiation // Kinetics and Catalysis. – 2003. – Vol. 44. – P. 28–39.
[20] Popov N.A. Influence of nonequilibrium excitation on ignition of hydrogen-oxygen mixtures. Theromphys. // High Temp. – 2007. – Vol. 45. – P. 296–31.
[21] Shatalov O.P., Ibraguimova L.B., Pavlov V.A., et al. Analysis of the kinetic data described oxygen-hydrogen mixtures combustion // Proceedings of the European Combustion Meeting. – 2009. – P. 811376.
[22] Slack M., Grillo A. Investigation of hydrogen-air ignition sensitized by nitric oxide and nitrogen dioxide // NASA Report CR-2896. – 1977.
[23] Schultz E., Shepherd J. Validation of detailed reaction mechanisms for detonation simulation / Cal. Inst. of Tech. Graduate Aeronautical Lab. Tech. Rep. FM 99-5. – 2000. – 230 р.
[24] Coward H.F., Jones G.W. Limits of flammability of gases and vapors / Bulletin 503, US Bureau of Mines. – 1952.
[25] Cashdollar K.L., Zlochower I.A., Green G.M., Thomas R.A., Hertzberg M. Flammability of methane, propane, and hydrogen gases // Journal of Loss Prevention in the Process Industries. – 2000. – Vol. 13. – No. 3–5. – P. 327– 340.
[26] Flame acceleration and deflagration-to-detonation transition in nuclear safety. State-of-the Art Report, OCDE-Nuclear Safety, NEA/CSNI/R, 2000.
[27] Kuznetsov M., Liberman M., Matsukov I. Experimental study of the preheat zone formation and deflagration to detonation transition // Combustion Science and Technology. – 2010. – Vol. 182. – No. 11–12. – P. 1628–1644.
[28] Зельдович Я.Б. Классификация режимов экзотермической реакции в зависимости от начальных условий // Препринт ин-та химической физики АН СССР. – Черноголовка. – 1978. – 7 с.