|

Synthesis and Properties of the TiO2--SiO2--P2O5/La2O3 Bioactive Spherical Composites Based on the Tokem-250 Cation Exchanger

Authors: Lyutova E.S., Vakulenko A.M., Borilo L.P. Published: 02.08.2024
Published in issue: #3(114)/2024  
DOI:

 
Category: Chemistry | Chapter: Inorganic Chemistry  
Keywords: spherical composite, Tokem-250, lanthanum oxide, bioactive materials, sol-gel method

Abstract

The TiO2--SiO2--P2O5 / La2O3 spherical composites on the Tokem-250 cation exchanger were obtained. The composite frame was represented by the TiO2--SiO2--P2O5 / La2O3, and the internal part was filled with the La2O3. Tokem-250 macroporous cation exchanger provides high selectivity for the La3+ lanthanum ions and appears to be promising in creation of the biomaterials. To ensure the composite spherical shape, stepwise heat treatment is required (after drying at the temperature of 60 °C) at 150, 250, 350 °C (30 minutes each) and at 600 °C (6 hours duration). Active centers (Si4+, Ti4+) on the surface of the resulting spherical composites promoted the calcium phosphates deposition and mineralization on the surface of the resulting materials in the biological media. The La3+ ion beneficially effected the ability to form a calcium phosphate layer on the surface of the TiO2--SiO2--P2O5 / La2O3 spherical composites on the Tokem-250 cation exchanger. The obtained samples could be used in further research. Polyvinyl alcohol could be introduced as a binding additive, since it is inert with respect to the samples under study and is not affecting bioproperties of the resulting spherical composites

The work was supported by the Development Program of National Research Tomsk State University ("Priority-2030")

Please cite this article in English as:

Lyutova E.S., Vakulenko A.M., Borilo L.P. Synthesis and properties of the TiO2--SiO2--P2O5/La2O3 bioactive spherical composites based on the Tokem-250 cation exchanger. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2024, no. 3 (114), pp. 163--178 (in Russ.). EDN: WMTLDW

References

[1] Kim T., See C.W., Li X., et al. Orthopedic implants and devices for bone fractures and defects: past, present and perspective. Eng. Regen., 2020, vol. 1, pp. 6--18. DOI: https://doi.org/10.1016/j.engreg.2020.05.003

[2] Jeong J., Kim J.H., Shim J.H., et al. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res., 2019, vol. 23, art. 4. DOI: https://doi.org/10.1186/s40824-018-0149-3

[3] Wajda A., Goldmann W.H., Detsch R., et al. Influence of zinc ions on structure, bioactivity, biocompatibility and antibacterial potential of melt-derived and gel-derived glasses from CaO--SiO2 system. J. Non. Cryst. Solids, 2019, vol. 511, iss. 1, pp. 86--99. DOI: https://doi.org/10.1016/j.jnoncrysol.2018.12.040

[4] Yilmaz E., Soylak M. Functionalized nanomaterials for sample preparation methods. In: Handbook of Nanomaterials in Analytical Chemistry. Elsevier, 2019, pp. 375--413. DOI: https://doi.org/10.1016/B978-0-12-816699-4.00015-3

[5] Stango S.X., Vijayalakshmi U. Synthesis and characterization of hydroxyap-atite/carboxylic acid functionalized MWCNTS composites and its triple layer coatings for biomedical applications. Ceram. Int., 2019, vol. 45, iss. 1, pp. 69--81. DOI: https://doi.org/10.1016/j.ceramint.2018.09.135

[6] Samavedi S., Whittington A.R., Goldstein A.S. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Act. Biomater., 2013, vol. 9, iss. 9, pp. 8037--8045. DOI: https://doi.org/10.1016/j.actbio.2013.06.014

[7] Ibadat N.F., Ongkudon C.M., Saallah S., et al. Synthesis and characterization of polymeric microspheres template for a homogeneous and porous monolith. Polymers, 2021, vol. 13, iss. 21, art. 3639. DOI: https://doi.org/10.3390/polym13213639

[8] Li X., Wang M., Deng Y., et al. Fabrication and properties of Ca--P bioceramic spherical granules with interconnected porous structure. ACS Biomater. Sci. Eng., 2017, vol. 3, iss. 8, pp. 1557--1566. DOI: https://doi.org/10.1021/acsbiomaterials.7b00232

[9] Bjornoy S.H., Bassett D.C., Ucar S., et al. A correlative spatiotemporal microscale study of calcium phosphate formation and transformation within an alginate hydrogel matrix. Acta Biomater., 2016, vol. 44, pp. 254--266. DOI: https://doi.org/10.1016/j.actbio.2016.08.041

[10] Biernat M., Jaegermann Z., Tymowicz-Grzyb P., et al. Influence of low-temperature reaction time on morphology and phase composition of short calcium phosphate whiskers. Process. Appl. Ceram., 2019, vol. 13, no. 1, pp. 57--64. DOI: https://doi.org/10.2298/PAC1901057B

[11] Popa A.C., Stan G.E., Husanu M.A., et al. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry. Int. J. Nanomed., 2017, vol. 12, pp. 683--707. DOI: https://doi.org/10.2147/IJN.S123236

[12] Sadat-Shojai M., Khorasani M.T., Dinpanah-Khoshdargi E. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater., 2013, vol. 9, iss. 8, pp. 7591--7621. DOI: https://doi.org/10.1016/j.actbio.2013.04.012

[13] Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury, 2000, vol. 31, pp. D37--D47. DOI: https://doi.org/10.1016/S0020-1383(00)80022-4

[14] Wu S.C., Hsu H.C., Hsu S.K., et al. Effects of calcination on synthesis of hydroxyapatite derived from oyster shell powders. J. Aust. Ceram. Soc., 2019, vol. 55, pp. 1051--1058. DOI: https://doi.org/10.1007/s41779-019-00317-7

[15] Esmaeilkhanian A., Sharifianjazi F., Abouchenari A., et al. Synthesis and characterization of natural nano-hydroxyapatite derived from turkey femur-bone waste. Appl. Biochem. Biotechnol., 2019, vol. 189, no. 3, pp. 919--932. DOI: https://doi.org/10.1007/s12010-019-03046-6

[16] Rahmani F., Es-Haghi A., Hosseini M.-R.M., et al. Preparation and characterization of a novel nanocomposite coating based on sol-gel titania/hydroxyapatite for solid-phase microextraction. Microchem. J., 2019, vol. 145, pp. 942--950. DOI: https://doi.org/10.1016/j.microc.2018.12.012

[17] Campana V., Milano G., Pagano E., et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci.: Mater. Med., 2014, vol. 25, no. 10, pp. 2445--2461. DOI: https://doi.org/10.1007/s10856-014-5240-2

[18] Hector M.G., Melnikov P., Arkhangelsky I., et al. Thermal decomposition of lanthanum nitrate hexahydrate La(NO3)3 ∙ 6H2O. Int. J. Dev. Res., 2021, vol. 11, no. 1, pp. 43318--43321

[19] Kozik, V.V., Borilo, L.P., Lyutova, E.S., et al. Preparation of CaO--TiO2--SiO2 biomaterial with a sol-gel method for bone implantation. ACS Omega, 2020, vol. 5, iss. 42, pp. 27221--27226. DOI: https://doi.org/10.1021/acsomega.0c03335

[20] Borilo L.P., Kozik V.V., Lyutova E.S., et al. Sol-gel production and properties of spherical biomaterials for the system TiO2--SiO2/CaO. Glass Ceram., 2019, vol. 76, no. 8, pp. 315--320. DOI: https://doi.org/10.1007/s10717-019-00191-6

[21] Shamsutdinova A.N., Kozik V.V. Preparation and properties of thin films based on titanium, silicon, and nickel oxides. Khimiya v interesakh ustoychivogo razvitiya [Chem. Sustain Dev.], 2016, vol. 24, no. 5, pp. 699--704 (in Russ.). DOI: http://dx.doi.org/10.15372/KhUR2016051

[22] Kokubo T., Kushitani H., Sakka S. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A--W3. Biomaterials, 1990, vol. 24, no. 6, pp. 721--734. DOI: https://doi.org/10.1002/jbm.820240607

[23] Vijayalakshmi U., Rajeswari S. Preparation and characterization of microcrystalline hydroxyapatite using sol gel method. Trends Biomater. Artif. Org., 2006, vol. 19, no. 2, pp. 57--62.

[24] Balamurugan A., Sockalingum G., Michel J., et al. Synthesis and characterization of sol gel derived bioactive glass for biomedical applications. Mater. Lett., 2006, vol. 60, iss. 29-30, pp. 3752--3757. DOI: https://doi.org/10.1016/j.matlet.2006.03.102