|

Kinetic Regularities of the Transition Metal Oxides Dissolution in the Acid Medium

Authors: Eliseeva E.A., Berezina S.L., Boldyrev V.S. Published: 29.05.2024
Published in issue: #2(113)/2024  
DOI:

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: dissolution kinetics, metal oxides, specific rate, surfactants, adsorption, acid-base model, oxidation mechanism

Abstract

Studying patterns of the transition metals oxide phase dissolution becomes relevant when solving problems related to the metal compounds optimization from depleted ore, to the leaching and enrichment processes, etching of metals and purification of their compounds. The accumulated experimental material relates to particular issues in the d-metal oxides interaction in solutions of various composition. To establish general criteria for processes and mechanisms of their occurrence, it is necessary to summarize data on kinetic patterns of the d-metals solid phase dissolution using the modern concepts. The paper presents results of studying dissolution kinetics of titanium, zirconium and hafnium dioxides in the acidic medium. Kinetic characteristics are obtained, and the kinetic curves nature is determined. Oxide dissolution dependence on the sulfuric acid concentration is established. The data obtained are interpreted taking into account the acid-base equilibrium constants established at the metal oxide/electrolyte solution interface. Experimental and theoretical data are comparatively compared characterizing the oxide dissolution kinetic patterns. The process is simulated, and a dissolution scheme is proposed. It is shown that dissolution of the titanium subgroup metals oxide phase in the acidic medium is accompanied by formation of the intermediate adsorption complexes. Due to different ability of the hydroxide groups to attach the hydrogen ions, acidic properties in the TiO2, ZrO2 and HfO2 series decrease. The results obtained could be informative in studying kinetic characteristics of the transition metal oxides and in practical applications for optimizing their dissolution processes in the acidic media

The work was carried out according to the program of the State Assignment (no. FSFN-2023-0004)

Please cite this article in English as:

Eliseeva E.A., Berezina S.L., Boldyrev V.S. Kinetic regularities of the transition metal oxides dissolution in the acid medium. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2024, no. 2 (113), pp. 116--128 (in Russ.). EDN: NQDAXS

References

[1] Woodley S.M., Hamad S., Mejias J.A., et al. Properties of small TiO2, ZrO2 and HfO2 nanoparticles. J. Mater. Chem., 2006, vol. 16, iss. 20, pp. 1927--1933. DOI: https://doi.org/10.1039/B600662K

[2] Pugachevskiy M.A., Mamontov V.A., Nikolaeva S.N., et al. Influence of the size factor on the structure and physical and chemical properties of titanium dioxide nanoparticles. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Ser. Tekhnika i technologii [Proceedings of the Southwest State University. Ser. Engineering and Technology], 2021, vol. 11, no. 2, pp. 104--118 (in Russ.). EDN: BMLSHO

[3] Gupta S.M., Tripathi M. A review of TiO2 nanoparticles. Chinese Sci. Bull., 2011, vol. 56, no. 16, pp. 1639--1657. DOI: https://doi.org/10.1007/s11434-011-4476-1

[4] Perevalov T.V, Gritsenko V.A. Application and electronic structure of high permittivity dielectrics. Phys.-Usp., 2010, vol. 53, iss. 6, pp. 561--576. DOI: http://dx.doi.org/10.3367/UFNe.0180.201006b.0587

[5] Kirm M., Aarik J., Jugens M., et al. Thin films of HfO2 and ZrO2 as potential scintillators. Nucl. Instrum. Methods. Phys. Res. B., 2005, vol. 537, iss. 1-2, pp. 251--255. DOI: https://doi.org/10.1016/j.nima.2004.08.020

[6] Sokolov I.V. Ispolzovanie MathCad dlya modelirovaniya i rascheta kislotno-osnovnykh ravnovesiy [Using MathCad for modeling and calculation of acid-base balances]. Moscow, Prometey Publ., 2007.

[7] Eliseeva E.A., Berezina S.L., Boldyrev V.S., et al. Modeling the process of dissolution of iron oxide Fe3O4 in an acidic environment. Chernye metally, 2020, no. 10, pp. 15--20 (in Russ.). EDN: QMDPMM

[8] Kipriyanov N.A., Gorichev I.G. Modeling of leaching in hydrometallurgy oxidable minerals using their acid-basic properties. Vestnik RUDN. Ser. Inzhenernye issledova-niya [RUDN Journal of Engineering Research], 2008, no. 3, pp. 73--78 (in Russ.). EDN: JKGLOJ

[9] Eliseeva E.A., Berezina S.L., Gorichev I.G., et al. Effect of the surface structure of the Co3O4 oxide on the dissolution kinetics in an acid electrolyte. Russ. Metall., 2022, vol. 2022, no. 1, pp. 42--47. DOI: https://doi.org/10.1134/S0036029522010062

[10] Eliseeva E.A., Berezina S.L., Boldyrev V.S., et al. Influence of the morphology of Co2O3 particles on the dissolution kinetics in electrolytes. Tsvetnye metally, 2020, no. 11, pp. 14--18 (in Russ.). DOI: https://doi.org/10.17580/tsm.2020.11.02

[11] Paukshtis E.A. Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize [Infrared spectroscopy in heterogeneous acid-base catalysis]. Novosibirsk, Nauka Publ., 1992.

[12] Eliseeva Е.А., Berezina S.L., Goritchev I.G., et al. Anodic dissolution of cobalt in sulfate electrolyte. Int. J. Corros. Scale Inhib., 2022, vol. 11, no. 1, pp. 151--160. DOI: http://dx.doi.org/10.17675/2305-6894-2022-11-1-8

[13] Rusakova S.M., Gorichev I.G., Artamonova I.V., et al. Study of TiO2 properties for commercial production. Izvestiya MGTU MAMI, 2010, no. 2, pp. 179--184 (in Russ.). DOI: https://doi.org/10.17816/2074-0530-69731

[14] Gorichev I.G., Izotov A.D., Kishkina K.A., et al. Ispolzovanie predstavleniy o stroenii dvoynogo elektricheskogo sloya v metodakh eksperimentalnogo opredeleniya i rascheta konstant kislotno-osnovnykh ravnovesiy na granitse oksid/elektrolit [Using ideas about electric double layer structure in methods of experimental determination and calculation of acid-base equilibrium constants at the oxide/electrolyte interface]. Moscow, RUDN Publ., 2001.

[15] Batrakov V.V., Khlupov A.Yu., Gorichev I.G., et al. Constants of acid-base equilibria at the ZrO2/electrolyte interface. Rus. Jour. Phys. Chem., 2000, vol. 74, suppl. 3, pp. 553--558. EDN: LGCEKV

[16] Kostrikin A.V., Gorichev I.G., Linko I.V., et al. Structural features and acid-base properties of hydrated zirconium, hafnium, tin, and lead dioxides. Russ. J. Inorg. Chem., 2005, vol. 50, no. 3, pp. 339--345.

[17] Averina Yu.M., Kalyakina G.Yu., Menshikov V.V., et al. Neutralisation process design for electroplating industry wastewater containing chromium and cyanides. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 3 (84), pp. 70--80 (in Russ.). EDN: VVVGUP. DOI: https://doi.org/10.18698/1812-3368-2019-3-70-80

[18] Bogomolov B.B., Boldyrev V.S., Zubarev A.M., et al. Intelligent logical information algorithm for choosing energy- and resource-efficient chemical technologies. Theor. Found. Chem. Eng., 2019, vol. 53, no. 5, pp. 709--718. DOI: https://doi.org/10.1134/S0040579519050270

[19] Kuzin E., Averina Yu., Kurbatova A., et al. Titanium-containing coagulants in wastewater treatment processes in the alcohol industry. Processes, 2022, vol. 10, iss. 3, art. 440. DOI: https://doi.org/10.3390/pr10030440

[20] Boldyrev V.S., Averina Yu.M., Menshikov V.V., et al. Technological and organizational engineering of paint processing. Theor. Found. Chem. Eng., 2020, vol. 54, no. 3, pp. 420--424. DOI: https://doi.org/10.1134/S004057952003001X

[21] Boldyrev V.S., Kuznetsov S.V., Menshikov V.V. Innovatsionnoe razvitie malotonnazhnykh nauchno-proizvodstvennykh predpriyatiy lakokrasochnoy otrasli [Innovative development of small-tonnage scientific and production enterprises of paint and coating industry]. Moscow, Peynt-Media Publ., 2021.