|

Single-Crystal Aluminum Film Formation Using the SCULL Technology

Authors: Androshchuk M.V., Moskalev D.O., Korshakov N.D., Konstantinova T.G., Sorokina O.S., Fokin D.A., Baburin A.S., Panfilov Yu.V., Ryzhikov I.A., Rodionov I.A. Published: 10.11.2024
Published in issue: #5(116)/2024  
DOI:

 
Category: Physics | Chapter: Condensed Matter Physics  
Keywords: thin aluminum film, electron-beam evaporation, SCULL technology, single-crystal film

Abstract

The article presents results of a comprehensive study of the island stage in thin aluminum film growth required to form a seed layer and the built on it continuous single-crystal thin film using the SCULL technology. Influence of the electron beam evaporation process parameters, i.e., substrate temperature during thin film growth at 200--500 °С and seed layer thickness of 3--5 nm, on the islands' lateral size was studied. Experimental samples were examined using scanning electron microscopy, electron backscatter diffraction, X-ray diffraction, and atomic force microscopy. The study resulted in obtaining the dependence of alteration in the growth pattern of the aluminum thin film seed layer on the deposition process parameters. The developed technology of forming a seed layer on the Si(111) silicon substrate matched with aluminum by a constant lattice made it possible to obtain a continuous aluminum film with the single-crystal structure on its basis, its thickness was 35 nm. The mean-square roughness of the film was less than 0.4 nm, FWHM = 0.453°

Experimental samples and technology were developed at the Bauman Moscow State Technical University Technology Center (Scientific-Educational Center
of Functional Micro/Nanosystems, ID 74300). The work was carried out using the Dimension Icon atomic force microscope, which is a part of the Avogadro unique scientific installation (http://avo.ibmc.msk.ru/)

Please cite this article in English as:

Androshchuk M.V., Moskalev D.O., Korshakov N.D., et al. Single-crystal aluminum film formation using the SCULL technology. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2024, no. 5 (116), pp. 56--70 (in Russ.). EDN: MBZAUW

References

[1] McSkimming B.M., Alexander A., Samuels M.H., et al. Metamorphic growth of relaxed single crystalline aluminum on silicon (111). J. Vac. Sci. Technol. A, 2017, vol. 35, iss. 2, art. 02401. DOI: https://doi.org/10.1116/1.4971200

[2] Vesseur E.J.R., de Waele R., Lezec H.J., et al. Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. Appl. Phys. Lett., 2008, vol. 92, iss. 8, art. 083110. DOI: https://doi.org/10.1063/1.2885344

[3] Huang J.-S., Callegari V., Geisler P., et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun., 2010, vol. 1, art. 150. DOI: https://doi.org/10.1038/ncomms1143

[4] Lu Y.-J., Kim J., Chen H.-Y., et al. Plasmonic nanolaser using epitaxially grown silver film. Science, 2012, vol. 337, no. 6093, pp. 450--453. DOI: https://doi.org/10.1126/science.1223504

[5] Koch J., Terri M.Y., Gambetta J., et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, vol. 76, iss. 4, art. 042319. DOI: https://doi.org/10.1103/PhysRevA.76.042319

[6] Barends R., Kelly J., Megrant A., et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 2014, vol. 508, no. 7497, pp. 500--503. DOI: https://doi.org/10.1038/nature13171

[7] Kim Z., Suri B., Zaretskey V., et al. Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms. Phys. Rev. Lett., 2011, vol. 106, iss. 12, art. 120501. DOI: https://doi.org/10.1103/PhysRevLett.106.120501

[8] Gol’tsman G.N., Okunev O., Chulkova G., et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett., 2001, vol. 79, iss. 6, pp. 705--707. DOI: https://doi.org/10.1063/1.1388868

[9] Hofheinz M., Wang H., Ansmann M., et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature, 2009, vol. 459, no. 7246, pp. 546--549. DOI: https://doi.org/10.1038/nature08005

[10] Wang H., Hofheinz M., Wenner J., et al. Improving the coherence time of superconducting coplanar resonators. Appl. Phys. Lett., 2009, vol. 95, iss. 23, art. 233508. DOI: https://doi.org/10.1063/1.3273372

[11] Mariantoni M., Wang H., Yamamoto T., et al. Implementing the quantum von Neumann architecture with superconducting circuits. Science, 2011, vol. 334, no. 6052, pp. 61--65. DOI: https://doi.org/10.1126/science.1208517

[12] Choi C.-H., Harper R.A., Yapsir A.S., et al. Epitaxial growth of Al(111)/Si(111) films using partially ionized beam deposition. Appl. Phys. Lett., 1987, vol. 51, iss. 24, pp. 1992--1994. DOI: https://doi.org/10.1063/1.98321

[13] Choi C.-H., Ramanarayanan R., Mei S.N., et al. Control of Al orientation on Si(100) substrate using a partially ionized beam. MRS Online Proceedings Library, 1987, vol. 93, pp. 267--271. DOI: https://doi.org/10.1557/PROC-93-267

[14] Yamada I., Takagi T. Metallization by ionized cluster beam deposition. IEEE Trans. Electron. Devices, 1987, vol. 34, iss. 5, pp. 1018--1025. DOI: https://doi.org/10.1109/T-ED.1987.23038

[15] Nakajima Y., Kusuyama K., Yamaguchi H., et al. Growth of single-crystal aluminum films on silicon substrates by DC magnetron sputtering. Jpn. J. Appl. Phys., 1992, vol. 31, no. 6R, art. 1860. DOI: https://doi.org/10.1143/JJAP.31.1860

[16] Bufford D., Liu Y., Zhu Y., et al. Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett., 2013, vol. 1, iss. 1, pp. 51--60. DOI: https://doi.org/10.1080/21663831.2012.761654

[17] Landry J.D., Mitchell E.N. New single-crystal orientations in epitaxial aluminum films. J. Appl. Phys., 1969, vol. 40, iss. 8, pp. 3400--3402. DOI: https://doi.org/10.1063/1.1658199

[18] Von Bassewitz A., Mitchell E.N. Resistivity studies of single-crystal and polycrystal films of aluminum. Phys. Rev., 1969, vol. 182, iss. 3, art. 712. DOI: https://doi.org/10.1103/PhysRev.182.712

[19] d’Heurle F., Ames I. Electromigration in single-crystal aluminum films. Appl. Phys. Lett., 1970, vol. 16, iss. 2, pp. 80--81. DOI: https://doi.org/10.1063/1.1653108

[20] Jayadevaiah T.S., Kirby R.E. Electrical conduction in single-crystal aluminum thin films. Appl. Phys. Lett., 1969, vol. 15, iss. 5, pp. 150--152. DOI: https://doi.org/10.1063/1.1652945

[21] Lin S.-W., Wu J.-Y., Lin S.-D., et al. Characterization of single-crystalline aluminum thin film on (100) GaAs substrate. Jpn. J. Appl. Phys., 2013, vol. 52, no. 4R, art. 045801. DOI: https://doi.org/10.7567/JJAP.52.045801

[22] Megrant A., Neill C., Barends R., et al. Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett., 2012, vol. 100, iss. 11, art. 113510. DOI: https://doi.org/10.1063/1.3693409

[23] Ludeke R., Chang L.L., Esaki L. Molecular beam epitaxy of alternating metal-semiconductor films. Appl. Phys. Lett., 1973, vol. 23, iss. 4, pp. 201--203. DOI: https://doi.org/10.1063/1.1654858

[24] Richardson C.J., Siwak N.P., Hackley J., et al. Fabrication artifacts and parallel loss channels in metamorphic epitaxial aluminum superconducting resonators. Supercond. Sci. Technol., 2016, vol. 29, no. 6, art. 064003.DOI: https://doi.org/10.1088/0953-2048/29/6/064003

[25] Chou Y.-H., Wu Y.-M., Hong K.-B., et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Lett., 2016, vol. 16, no. 5, pp. 3179--3186. DOI: https://doi.org/10.1021/acs.nanolett.6b00537

[26] Barends R., Kelly J., Megrant A., et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Appl. Phys. Lett., 2013, vol. 111, iss. 8, art. 080502. DOI: https://doi.org/10.1103/PhysRevLett.111.080502

[27] Baburin A.S., Gabidullin A.R., Zverev A.V., et al. Silver films deposited by electron-beam evaporation for application in nanoplasmonics. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2016, no. 6 (111), pp. 4--14 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3933-2016-6-4-14

[28] Rodionov I.A., Baburin A.S., Gabidullin A., et al. Quantum engineering of atomically smooth single-crystalline silver films. Sci. Rep., 2019, vol. 9, art. 12232. DOI: https://doi.org/10.1038/s41598-019-48508-3

[29] Vaynshteyn B.K. Sovremennaya kristallografiya. T. 3 [Modern crystallography. Vol. 3]. Moscow, Nauka Publ., 1980.

[30] Magnfalt D. Fundamental processes in thin film growth: the origin of compressive stress and the dynamics of the early growth stages. Linkoping Univ. Electronic Press, 2014.