Calculation of Radiative Parameters for A1Σ+-X1Σ+ Electronic Transition of the KLi Molecule
Authors: Smirnov A.D. | Published: 14.02.2017 |
Published in issue: #1(70)/2017 | |
DOI: 10.18698/1812-3368-2017-1-112-123 | |
Category: Chemistry | Chapter: Physical Chemistry | |
Keywords: potential energy curve, radial wave equation, Einstein coefficients, oscillator strengths, radiative lifetime of the excited electron state, Franck - Condon factors |
The purpose of this study was to calculate the radiative parameters (Einstein coefficients of spontaneous radiation, oscillator strengths for absorption, Franok - Condon factors, r-centroid, vibrational-rotational wave numbers in electronic transition A1Σ+-X1Σ+ for the molecule KLi (0 ≤ v' ≤ 20, 0 ≤ v" ≤ 36, j' = 0, 30, 50, 70)) and radiative lifetimes of excited electronic state. The vibrational energies and the wave functions are found as a result of numerical solving of the radial wave equation based on potential energy curves constructed in the present work. We compared the calculated energies with experimental values and for the first time obtained the radiative lifetimes.
References
[1] Lang F., Winkler K., Strauss C., Grimm R., Densсhlag J.K. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett., 2008, vol. 101, pp. 133005-133009.
[2] Mark M.J., Danzl J.G., Haller E., Gustavsson M., Bouloufa N., Dulieu O., Salami H., Bergeman T., Ritsch H., Hart R., Nagerl H.C. Dark resonances for ground state transfer of molecular quantum gases. Appl. Phys. B., 2009, vol. 95, pp. 219-225.
[3] Ghanmi C., Farjallah M., Berriche H. Theoretical study of low-lying electronic states of the LiRb+ molecular ion: Structure, spectroscopy and transition dipole moments. Int. Journal. Quant. Chem., 2012, vol. 112, pp. 2403-2410.
[4] Smirnov A.D. Calculation of spectroscopic constants and radiative parameters for А1Sigma+u-X1Sigma+g and B1П+u-X1Sigma+g electronic transitions of lithium dimer. Opt. Spectrosc., 2012, vol. 113, no. 4, pp. 345-352. DOI: 10.1134/S0030400X12080176
[5] Smirnov A.D. Calculation of spectroscopic constants and radiative parameters for A1Sigma+u-X1Sigma+g and B1П+u-X1Sigma+g electronic transitions of sodium dimer. Opt. Spectrosc., 2010, vol. 109, no. 5, pp. 680-686. DOI: 10.1134/S0030400X10110068
[6] Smirnov A.D. Calculation of radiative parameters for A1Sigma+u-X1Sigma+g and B1П+u-X1Sigma+g electronic transitions of potassium dimer. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 2, pp. 67-85 (in Russ.).
[7] Smirnov A.D. Energy and radiation properties of the electronic transition of the cesium and rubidium dimers. Jelektr. nauchno-tekh. izd. "Inzhenernyy zhurnal: nauka i innovacii" [El. Sc.-Tech. Publ. "Eng. J.: Science and Innovation"], 2013, iss. 6. DOI: 10.18698/2308-6033-2013-6-790 Available at: http://engjournal.ru/eng/catalog/fundamentals/physics/790.html
[8] Smirnov A.D. Calculation of radiative parameters for AlKaLi-dimer cations of lithium, sodium and potassium. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 4, pp. 45-56 (in Russ.). DOI: 10.18698/1812-3368-2015-4-45-56
[9] Smirnov A.D. Calculation of spectroscopic constants and radiative parameters for the B1П-X1Sigma+ electronic transitions of NaK, NaRb, and NaCs molecules. Opt. Spectrosc., 2014, vol. 117, no. 3, pp. 358-365. DOI: 10.1134/S0030400X14080244
[10] Smirnov A.D. Calculation of radiative parameters for B1П+-X1Sigma+ electron transition of KRb molecule. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 6, pp. 52-62 (in Russ.). DOI: 10.18698/1812-3368-2015-6-52-62
[11] Fedorov V.V., Smirnov A.D. Calculation of radiative parameters for A1Sigma+-X1Sigma+ electron transition of NaLi molecule. Sb. nauch. tr. VI Mezhdunar. nauch-prakt. konf. "Sovremennye tendentsii razvitiya nauki i tekhnologiy" [Proc. VI Int. Sci.-Practical. Conf. Modern Trends in the Development of Science and Technologies]. In 10 parts. Part 3, no. 6. 144 p.
[12] Dardouri R., Habli H., Oujia B., Gadea F.Y. Theoretical study of the electronic structure of KLi molecule: Adiabatic and diabatic potential energy curves and dipole moments. Chem. Physics, 2012, vol. 399, pp. 65-79.
[13] Bellayouni S., Jendoubi I., Marbrouk N., Berriche H. Systematic study of the electronic properties and trends in the LiX (X = Na, K, Rb, Cs and Fr). Advances in Quantum Chemistry, 2014, vol. 68, pp. 203-238.
[14] Martin F., Crozet P., Ross A.J., Aubert-Frecon M., Kowalczyk P., Jastzebski W., Pashov A. On the X1Sigma+ state of KLi. J. Chem. Phys., 2001, vol. 115, no. 9, pp. 4118-4124.
[15] Grochola A., Szczepkowski J., Jastzebski W., Kowalczyk P. The A1Sigma+ electronic state of KLi molecule. Chem. Phys. Letters, 2012, vol. 535, pp. 17-20.
[16] Hadinger Gisele, Hadinger Gerold, Magnier S., Aubert-Frecon M. A particular case of asymptotic formulas for exchange energy between two long-range interacting atoms with open valance shells of any type: Application to the ground state of AlKaLi dimmers. J. Mol. Spectr., 1996, vol. 175, no. 2, pp. 441-444.
[17] Zulicke L. Quantenchemie. Ein Lehrgang. Band 1. Grundlagen und allgemeine methoden. Berlin, VEB Deutscher Verlag der Wissenschaften, 1973.
[18] Kratzer A. Die ultraroten rotationsspektren der halogenwasserstoffe. Z. Phys., 1920, vol. 3, no. 5, pp. 289-307.
[19] Kemble E.C., Birge R.T., Colby W.F. et al. Molecular spectra in gases. National Research Council, Washington, D.C., 1930, p. 57.
[20] Laher R.R., Khakoo M.A., Antic-Jovanovic A. Radiative transition parameters for the A1Sigma+u-X1Sigma+g bands system of 107,109Ag2. J. Mol. Spectr., 2008, vol. 248, pp. 111-121.