|

Hematite as a Sorbent of Cobalt (II) Ions

Authors: Eliseeva E.A., Slynko L.E., Atanasyan T.K., Gorichev I.G., Goryacheva V.N. Published: 05.12.2018
Published in issue: #6(81)/2018  
DOI: 10.18698/1812-3368-2018-6-128-141

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: adsorption, cobalt ions, hematite, acid-base properties, equilibrium constants, sorbent, iron oxide

We performed an experimental investigation of cobalt (II) ion adsorption to an iron (III) oxide sorbent at various рН and concentrations of cobalt (II) ions. We used potentiometric titration and precise weight methods to determine the acid-base equilibrium constants at the oxide-electrolyte interface based on the electrokinetic potential as a function of рН. We suggest describing adsorption functions within the framework of the acid-base theory of adsorption. We determined that adsorption of cobalt (II) ions depends on the ion concentration and only weakly depends on the sorbent type (Fe2O3). The Со (II) ion to Fe2O3 adsorption process occurs at a рН lower than the рН of cobalt oxide and hydroxide precipitation. Adsorption depends weakly on the point of zero charge of the sorbents under consideration. Optimum рН for the oxide and hydroxide precipitation onset are рН 4.5--6.5 depending on cobalt ion concentration

References

[1] James R.O., Healy T.W. Adsorption of hydrolysable metal ions at the oxide--water interface. I. Co (II) adsorption on SiO2 and TiO2 as model systems. J. Colloid Interface Sci., 1972, vol. 40, iss. 1, pp. 42–52. DOI: 10.1016/0021-9797(72)90172-5

[2] James R.O., Healy T.W. Adsorption of hydrolysable metal ions at the oxide--water interface. II. Charge reversal of SiO2 and TiO2 colloids by adsorbed Co (II), La (III), and Th (IV) as model systems. J. Colloid Interface Sci. 1972, vol. 40, iss. 1, pp. 53–64. DOI: 10.1016/0021-9797(72)90173-7

[3] James R.O., Healy T.W. Adsorption of hydrolysable metal ions at the oxide--water interface. III. A thermodynamic model of adsorption. J. Colloid Interface Sci., 1972, vol. 40, iss. 1, pp. 65–81. DOI: 10.1016/0021-9797(72)90174-9

[4] Blesa M.A., Larotonda R.M., Maroto A.J.G., Regazzoni A.E. Behaviour of cobalt (III) in aqueous suspensions of magnetite. J. Colloid Interface Sci., 1982, vol. 5, iss. 3, pp. 197–207. DOI: 10.1016/0166-6622(82)80078-4

[5] Tewari P.H., Campbell A.B., Lee W. Adsorption of Co2+ by oxides from aqueous solution. Can. J. Chem., 1972, vol. 50, pp. 1642–1648. DOI: 10.1139/v72-263

[6] Tamura H., Matijevic E., Meites L. Adsorption of Co2+ ions on spherical magnetite particles. J. Colloid Interface Sci., 1983, vol. 92, iss. 2, pp. 303–314. DOI: 10.1016/0021-9797(83)90152-2

[7] Healy T.W., James R.O., Cooper R. The adsorption of aqueous Co (II) at the silica--water interface. In: Adsorption of aqueous Co (II). American Chemical Society, 1967, pp. 62–73. DOI: 10.1021/ba-1968-0079.ch006

[8] Ma R., Liu Zh., Takada K., Fukuda K., Ebina Ya., Bando Yo., Sasaki T. Tetrahedral Co (II) coordination in a-type cobalt hydroxide: rietveld refinement and X-ray absorption spectroscopy. Inorg. Chem., 2006, vol. 45, no. 10, pp. 3964–3969. DOI: 10.1021/ic052108r

[9] Rengaraj S., Moon S.H. Kinetics of adsorption of Co (II) removal from water and wastewater by ion exchange resins. Water Res., 2002, vol. 36, iss. 7, pp. 1783–1793. DOI: 10.1016/S0043-1354(01)00380-3

[10] Marchenko Z. Fotometricheskoe opredelenie elementov [Fotometric element definition]. Moscow, Mir Publ., 1971. 501 p.

[11] Pyatnitskiy I.V. Analiticheskaya khimiya kobalta [Analytical chemistry of cobalt]. Moscow, Nauka Publ., 1965. 261 p.

[12] Butler J.N. Ionic equilibrium: a mathematical approach. Addison-Wesley, 1964. 547 p.

[13] Albert A., Serjeant E.P. Ionization constants of acids and bases. John Wiley & Sons, 1962. 179 p.

[14] Kokarev G.A., Kolesnikov V.A., Gubin A.F. Points of zero charge for oxides in aqueous solutions of electrolytes. Elektrokhimiya, 1982, vol. 18, no. 4, pp. 466–470 (in Russ.).

[15] Kokarev G.A., Kolesnikov V.A., Borsh Y., et al. On non-organic ions sorption on Co3O4 electrode from aqueous electrolyte solutions. Elektrokhimiya, 1984, vol. 20, no. 4, pp. 547–550 (in Russ.).

[16] Kokarev G.A., Kolesnikov V.A., Gubin A.F. Research on adsorption of alkali and alkali-earth metal cations on Co3O4 electrode from aqueous electrolyte solutions. Elektrokhimiya, 1984, vol. 20, no. 4, pp. 972–975 (in Russ.).

[17] Damaskin B.B., Petriy O.A. Vvedenie v elektrokhimicheskuyu kinetiku [Introduction to electrochemical kinetics]. Moscow, Vysshaya shkola Publ., 1983. 401 p.

[18] Hesleitner P., Babic D., Kallay N. Adsorption at solid/solution interfaces. 3. Surface charge and potential of colloidal hematite. Langmuir, 1987, vol. 3, no. 5, pp. 815–820. DOI: 10.1021/la00077a041

[19] Sten P., Puhakka E., Ikavalko E. Adsorption studies on iron oxides with reference to the oxide films formed on material surfaces in nuclear power plants. VTT Research Notes, 2002, no. 2182, pp. 1–37.

[20] Westall J., Hohl H. A comparison of electrostatic models for the oxide/solution interface. Adv. Colloid Interface Sci., 1980, vol. 12, iss. 4, pp. 265–294. DOI: 10.1016/0001-8686(80)80012-1

[21] Barrow N.J., Bowden J.W.A. A comparison of models for describing the adsorption of anions A on a variable charge mineral surface. J. Colloid Interface Sci., 1987, vol. 119, iss. 1, pp. 236–250. DOI: 10.1016/0021-9797(87)90263-3

[22] Hayes K.F., Leckie J.O. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J. Colloid Interface Sci., 1987, vol. 115, iss. 2, pp. 564–572. DOI: 10.1016/0021-9797(87)90078-6

[23] Blesa M.A., Weiss A.D., Morando P.J., Salfity J.A., Magaz G.E., Regazzoni A.E. The interaction of metal oxide surfaces with complexing agents dissolved in water. Coord. Chem. Rev., 2000, vol. 196, iss. 1, pp. 31–63. DOI: 10.1016/S0010-8545(99)00005-3

[24] Yakusheva E.A., Gorichev I.G., Atanasyan T.K., Layner Yu.A. Acid-base model of Co oxide dissolution in acid medium. Khimicheskaya tekhnologiya, 2009, vol. 10, no. 9, pp. 553–562 (in Russ.).