|

An Equation for Computing Thermal Capacity of an Electrolyte in a Dissociated Solution

Authors: Akhapkina T.E., Gurov A.A., Solovev S.N., Kozhevnikova S.V. Published: 20.02.2019
Published in issue: #1(82)/2019  
DOI: 10.18698/1812-3368-2019-1-77-87

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: strong electrolyte, thermal capacity, Debye --- Hückel theory, Kuznetsova's theory

The authors used E.M. Kuznetsova's theory to derive an equation for computing thermal capacity of an electrolyte in a dissociated solution. This equation may also be used to determine such important characteristics as the constant and enthalpy of ion association in electrolyte solutions. This equation is derived from the simplest model, that of ion association, which allows certain solution properties to be adequately described as functions of concentration. The ion association model is based on the equilibrium between ions and ion pairs of the same kind that exists in electrolyte solutions

References

[1] Marcus Y., Hefter G. Ion pairing. Chem. Rev., 2006, vol. 106, iss. 11, pp. 4585–4621. DOI: 10.1021/cr040087x

[2] Solovyev S.N., Khekalo T.V. Opredelenie termodinamicheskikh kharakteristik assotsiatsii elektrolitov v rastvorakh na osnove termokhimicheskikh izmereniy [Estimation of thermodynamic characteristics of electrolyte association based on chemical measurements]. Trudy RKhTU im. D.I. Mendeleeva. Vyp. 158 [Transactions of MUCTR. Vol. 158]. Moscow, Mendeleev UCTR Publ., 1989, pp. 129–138 (in Russ.).

[3] Minasyan K.A., Solovyev S.N. Termodinamicheskie kharakteristiki ionnoy assotsiatsii silnykh elektrolitov [Thermodynamic characteristics of ion association of strong electrolytes]. Trudy RKhTU im. D.I. Mendeleeva. Vyp. 182 [Transactions of MUCTR. Vol. 182]. Moscow, Mendeleev UCTR Publ., 2008, pp. 114–124 (in Russ.).

[4] Krachkovskaya Yu.A., Ovchinnikova O.V., Solovyev S.N. Uravnenie dlya rascheta teploemkosti rastvorov elektrolitov, podchinyayushchikhsya teorii Debaya - Khyukkelya [Equation for heat capacity calculation of electrolyte solution obeying to the Debye - Hückel theory]. Trudy RKhTU im. D.I. Mendeleeva. Vyp. 187 [Transactions of MUCTR. Vol. 187]. Moscow, Mendeleev UCTR Publ., 2014, pp. 124–131 (in Russ.).

[5] Kuznetsova E.M. Quantitative description of thermodynamic properties of individual and mixed solutions of strong electrolytes in different solvents and in a wide concentration range. Zhurnal Fizicheskoj Khimii, 1993, vol. 67, no. 9, pp. 1765–1775 (in Russ.).

[6] Solovev S.N., Senatorova S.V., Kolesnik E.A. A new equation for calculating the enthalpies of dilution of solutions of nonassociated electrolytes. Russ. J. Phys. Chem., 2006, vol. 80, iss. 10, pp. 1683–1685. DOI: 10.1134/S0036024406100244

[7] Harned H.S., Owen B.B. The physical chemistry of electrolytic solutions. Reinhold Pub. Corp., 1950.

[8] Karapetyants M.Kh. Khimicheskaya termodinamika [Chemical thermodynamics]. Moscow, KD "Librokom" Publ., 2012.

[9] Vishnyakov A.V., Kizim N.F. Fizicheskaya khimiya dlya bakalavrov [Physical chemistry for bachelors]. Tula, Akvarius Publ., 2014.

[10] Vasilyev V.P. Termodinamicheskie svoystva rastvorov elektrolitov [Thermodynamic properties of electrolyte solution]. Moscow, Vysshaya shkola Publ., 1982.