Estimation of Binary Systems Contribution to the Volumetric Thermal Properties using the Granular Medium Model
Authors: Balankina Ye.S. | Published: 11.10.2019 |
Published in issue: #5(86)/2019 | |
DOI: 10.18698/1812-3368-2019-5-73-88 | |
Category: Chemistry | Chapter: Physical Chemistry | |
Keywords: molar volume ratio, molecular packing density, volumetric coefficient of thermal expansion, granular medium, excess function, granular medium model, binary system |
The paper focuses on the analytical expressions obtained for the volumetric coefficient of thermal expansion depending on the differences in the geometric structure of the initial monosystems, i.e., the geometric factor, for binary systems with a ratio of the particles volumes in the range from 1 to 8, simulated by a granular medium. Within the research, we established the reasons for the differences between the apparent excess function and the excess function of the volumetric coefficient of thermal expansion. In systems consisting of molecules that differ significantly in shape, the main contribution to this difference is made by the different behavior of the packing coefficients of the molecules of the mixed components with temperature, while in systems where molecules are of similar shape the main contribution is made by the difference in their sizes. We estimated the geometric factor contribution to the concentration behavior of the excess functions of the molar volume and the volumetric coefficient of thermal expansion in the water--acetone system, and found that the degree of its influence on the behavior of the excess functions of these properties varies significantly
References
[1] Kessler Yu.M., Zaytsev A.L. Solvofobnye effekty: teoriya, eksperiment, praktika [Solvophobic effects: theory, experiment, practice]. Leningrad, Khimiya Publ., 1989.
[2] Smirnova N.A. Molekulyarnye teorii rastvorov [Molecular theory of solutions]. Leningrad, Khimiya Publ., 1987.
[3] Prigogine I. The molecular theory of solutions. North-Holland, 1957.
[4] Westman A.E.R., Hugill H.R. The packing of particles. J. Am. Ceram. Soc., 1930, vol. 13, iss. 10, pp. 767--779. DOI: https://doi.org/10.1111/j.1151-2916.1930.tb16222.x
[5] Kyrylyuk A.V., van de Haar M.A., Rossi L., et al. Isochoric ideality in jammed random packings of non-spherical granular matter. Soft Matter., 2011, vol. 7, iss. 5, pp. 1671--1674. DOI: https://doi.org/10.1039/C0SM00754D
[6] Yu A.B., Standish N. Porosity calculation of multi-component mixture of spherical particles. Powder Technol., 1987, vol. 52, iss. 3, pp. 233--241. DOI: https://doi.org/10.1016/0032-5910(87)80110-9
[7] Balankina E.S. Calculating excess volumes of binary solutions with allowance for structural differences between mixed components. Russ. J. Phys. Chem., 2016, vol. 90, iss. 6, pp. 1157--1163. DOI: https://doi.org/10.1134/S0036024416050095
[8] Meng L., Peng L., Shuixiang L., et al. Shape and size effects on the packing density of binary spherocylinders. Powder Technol., 2012, vol. 228, pp. 284--294. DOI: https://doi.org/10.1016/j.powtec.2012.05.033
[9] Shatalova I.G., Gorbunov N.S., Likhtman V.I. Fiziko-khimicheskie osnovy vibratsionnogo uplotneniya poroshkovykh materialov [Physical and chemical foundation of vibration compaction of powder materials]. Moscow, Nauka Publ., 1965.
[10] Clarke A.S., Willey J.D. Numerical simulation of the dense random packing of a binary mixture of a hard spheres. Phys. Rev. B, 1987, vol. 35, iss. 14, pp. 7350--7356. DOI: https://doi.org/10.1103/PhysRevB.35.7350
[11] He D., Ekere N.N., Cai L. Computer simulation of random packing of unequal spheres. Phys. Rev. E, 1999, vol. 60, iss. 6, pp. 7098--7104. DOI: https://doi.org/10.1103/PhysRevE.60.7098
[12] Yu A.-B., Zou R.-P., Standish N. Packing of ternary mixtures of nonspherical particles. J. Am. Ceram. Soc., 1992, vol. 75, iss. 10, pp. 2765--2772. DOI: https://doi.org/10.1111/j.1151-2916.1992.tb05502.x
[13] Danish M., Jin Yu., Makse H.A. Model of random packing of different size balls. Phys. Rev. E, 2010, vol. 81, iss. 5, art. 051303. DOI: https://doi.org/https://doi.org/10.1103/PhysRevE.81.051303
[14] Douhéret G., Davis M., Reis J. Excess isentropic compressibilities and excess ultrasound speeds in binary and ternary liquid mixtures. Fluid Phase Equilib., 2005, vol. 231, iss. 2, pp. 246--249. DOI: https://doi.org/10.1016/j.fluid.2004.09.011
[15] Douhéret G., Davis M., Reis J., et al. Isentropic compressibility --- experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. Chem. Phys., 2001, vol. 2, pp. 148--159.
[16] Kolker A.M., Egorov G.I., Gruznov E.L. Isothermal compressibility and volume expansion coefficients and inner pressure of water--acetone mixture. Russ. J. Phys. Chem., 1996, vol. 70, iss. 2, pp. 197--203.
[17] Kolker A.M., Egorov G.I., Gruznov E.L. Isothermal compressibility and volume expansion coefficients and inner pressure of water--acetone mixture. Russ. J. Phys. Chem., 1996, vol. 70, iss. 2, pp. 197--203.