|

Specifics of Reduction-Oxidation Processes Exposed to a Low--Frequency Acoustic Field

Authors: Fadeev G.N., Boldyrev V.S., Bogatov N.A., Nikolaev A.L. Published: 10.02.2020
Published in issue: #1(88)/2020  
DOI: 10.18698/1812-3368-2020-1-80-92

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: reduction-oxidation reaction, exposure to low sonic frequencies, sonochemical processes, inhibition effect

The investigation concerned the effects of low-frequency vibrations on a system consisting of two biochemically active components: methylene blue dye and ascorbic acid. Each component can be reversibly oxidized and reduced. This system allows us to trace the effect that a low-frequency vibration field has on the reciprocal reduction-oxidation process and detect specific features of this type of exposure. We discovered that reduction-oxidation processes in such systems do not accelerate but slow down when exposed to low frequencies, unlike those in the previously studied clathrate and chelate structures. We observe an inhibition effect concerning the sonochemical process in a low-frequency acoustic field. We performed a qualitative estimation of the effect

References

[1] Fadeev G.N., Boldyrev V.S., Ermolaeva V.I. Biologically active clathrates amiloiodin and amilopektoiodin under exposure to low-frequency acoustic field. Dokl. Biochem. Biophys., 2012, vol. 446, iss. 1, pp. 247--250. DOI: https://doi.org/10.1134/S1607672912050067

[2] Fadeev G.N., Boldyrev V.S., Sinkevich V.V. Sonochemical transformations of chelate and clathrate structures in a low-frequency acoustic field. Dokl. Phys. Chem., 2015, vol. 462, iss. 2, pp. 119--123. DOI: https://doi.org/10.1134/S0012501615060019

[3] Boldyrev V.S. Deystvie nizkochastotnykh kolebaniy na biokhimicheski aktivnye struktury. Dis. kand. tekh. nauk [Effect of low-frequency oscillations on bioactive structures. Cand. Sc. (Eng.) Diss.]. Moscow, MUCTR Publ., 2013 (in Russ.).

[4] Boldyrev V.S., Ermolaeva V.I., Sinkevich V.V., et al. Destabilization of polyvinyl pyrrolidone-iodine chelate structure in low-frequency field. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2017, no. 4, pp. 90--99 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2017-4-90-99

[5] Bol’shoy entsiklopedicheskiy slovar’. Khimiya [Big encyclopedic dictionary. Chemistry]. Moscow, Bol’shaya rossiyskaya entsiklopediya Publ., 2000.

[6] Rozenberg L.D. On evaluation of cavitatonal efficiency of acoustical energy. Akusticheskiy zhurnal, 1965, vol. 11, no. 1, pp. 121--124 (in Russ.).

[7] Margulis M.A., Mal’tsev A.N. On evaluation of the energy yield of chemical reactions initiated by ultrasound. I. Chemico-acoustic yield of reactions. Zhurnal fizicheskoy khimii, 1968, vol. 42, no. 6, pp. 1441--1446 (in Russ.).

[8] Margulis M.A., Margulis I.M. Mechanism of sonochemical reactions and sonolu-minescence. High Energy Chem., 2004, vol. 38, iss. 5, pp. 285--294. DOI: https://doi.org/10.1023/B:HIEC.0000041338.11770.74

[9] Margulis M.A., Margulis I.M. On the conditions of the transition of sonochemical reactions into the kinetic region. Russ. J. Phys. Chem., 2005, vol. 79, iss. 11, pp. 1848--1853.

[10] Margulis I.M., Margulis M.A. Dependence of the rate of formation of nitrate ions in water on the intensity and frequency of ultrasound waves. Russ. J. Phys. Chem., 2009, vol. 83, iss. 13, pp. 2233--2237. DOI: https://doi.org/10.1134/S0036024409130093

[11] Ershov Yu.A., Khachaturyan M.A., Semenova N.S., et al. Infrasound treatment of disperse pharmaceutical preparations. Biomeditsinskaya radioelektronika [Biomedical Radioelectronics], 2017, no. 9, pp. 40--43 (in Russ.).

[12] Gorshkova V.M., Savchenko S.V. Potential use of ultrasound for subcutaneous delivery of anesthetics. Biomed. Eng., 2013, vol. 47, iss. 1, pp. 36--38. DOI: https://doi.org/10.1007/s10527-013-9329-6

[13] Terenin A.N. Fotonika molekul krasiteley i rodstvennykh organicheskikh soedineniy [Photonics of dye molecules and related organic compounds]. Leningrad, Nauka Publ., 1967.

[14] Gorshkova V.M. Impact of low-frequency ultrasound on biological tissue. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2015, no. 6, pp. 63--67 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2015-6-63-67

[15] Gorshkova V.M., Dvulichanskaya N.N. The low-frequency ultrasound influence on lidocain and glycosaminoglycans. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2017, no. 1, pp. 103--111 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2017-1-103-111

[16] Gorshkova V.M., Dvulichanskaya N.N., Al’kov S.V. Experimental investigation of the low-frequency ultrasound effect for heparinum. Biomeditsinskaya radio-elektronika [Biomedical Radioelectronics], 2018, no. 10, pp. 57--60 (in Russ.). DOI: https://doi.org/10.18127/j15604136-201810-10

[17] Kratkaya khimicheskaya entsiklopediya. T. 5 [Brief chemical encyclopedia. Vol. 5]. Moscow, Sovetskaya entsiklopediya Publ., 1967.