|

On Predicting Toxic Impact of Uranium Hexafluoride Discharges

Authors: Babenko S.P. , Bad’in A.V.  Published: 07.04.2014
Published in issue: #2(53)/2014  
DOI:

 
Category: Ecology  
Keywords: uranium hexafluoride, uranium, fluorine, mathematical model, inhalation penetration, percutaneous penetration, dose

The quantitative assessment of uranium hexafluoride (UF6) impact on workers of atomic industry factories is performed. The different conditions are considered in which a person can find oneself under the emergency with one-time uranium hexafluoride discharge, and the stationary production conditions are discussed when weak technological emissions of this gas are possible from the vessels for its storage. A mathematical model of processes of formation and sedimentation of uranium hexafluoride and products of its hydrolysis in the enclosed space is described. The calculation method is given in the context of the model for determining the concentration of the uranium and fluorine atoms in the air of the working rooms, the density of a flow of these particles in case of emergency discharge of gaseous uranium hexafluoride and during the stationary production process. These quantities are governing in formation of the uranium and fluorine mass doses entering the human body through the inhalation and percutaneous penetration. The equations are given that describe a process of air pollution in the industrial room and subsequent sediment of products of uranium hexafluoride hydrolysis on the industrial surfaces. The conditions and simplifying suggestions are considered under which the initial equations are solved. The values calculated numerically and distribution of concentrations of the uranium and fluorine atoms in the volume of industrial room are given that underlie the calculation of doses of the most significant inhalation penetration of uranium and fluorine.

References

[1] Kikoin I.K. Tablitsy fizicheskikh velichin: Spravochnik [Database tables of physical quantities]. Moscow, Atomizdat Publ., 1976. 1008 p.

[2] Mirkhaydarov A.Kh. Issledovanie zakonomernostey zagryazneniya vozdushnoy sredy i poverkhnostey v proizvodstve razdeleniya izotopov urana. Diss. kand. tekhn. nauk [Study pollution relationships of air and surfaces in the production of uranium isotope separation. Cand. tech. sci. diss.]. Moscow, 1978. 217 p.

[3] Izv. Akad. Promyshlennoy Ekologii [Bull. Acad. Industrial Ecology], 2002, no. 1, pp. 67-71 (in Russ.).

[4] Babenko S.P., Bad’in A.V. Integrated model of the harmful effects of uranium hexafluoride on the human body under emergency conditions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2007, vol. 26, no. 3, pp. 89-100 (in Russ.).

[5] Babenko S.P. Prognozirovanie radiatsionnogo i toksicheskogo vozdeystviya vybrosov geksaftorida urana metodami matematicheskogo modelirovaniya. Diss. dokt. tekhn. nauk [Prediction of radiate and toxicological effects of uranium hexafluoride injection using mathematical simulation methods. Dr. tech. sci. diss.]. Moscow, Bauman MSTU Publ., 2008. 375 p.

[6] Babenko S.P. O raschete effektivnykh doz, poluchaemykh chelovekom pri perkutannom postuplenii urana vo vremya avariynoy situatsii na proizvodstvakh, rabotayushchikh s geksaftoridom urana [On calculation of effective doses received by a person at percutaneous injection of uranium during an incident on the manufactures dealing with uranium hexafluoride]. Bezopasnost’ truda v promyshlennosti [Labor safety in industry], 2005, no. 10, pp. 38-43 (in Russ.).

[7] Babenko S.P., Bad’in A.V. A mathematical model of percutaneous and inhalation injection of toxic substances into the human organism in the nuclear industry. Matematicheskoe modelirovanie [Mathematic simulation], 2006, vol. 18, no. 3, pp. 13-22 (in Russ.).

[8] Galkin N.P., Krutikov A.B. Tekhnologiya ftora [Process engineering of fluorine]. Moscow, Atomizdat Publ., 1968. 188 p.

[9] Petryanov-Sokolov I.S., Sutugin A.G. Aerozoli [The aerosols]. Moscow, Nauka Publ., 1989. 144 p.

[10] Topanaev I.V., Nikolaev N.S., Luk’yanychev Yu.A., Alenchikova I.F. Khimiya ftoristykh soedineniy aktinidov [Chemistry of actinide fluorides]. Moscow, AN SSSR Publ., 1963. 166 p.

[11] Belousov V.V. Teoreticheskie osnovy protsessov gazoochistki [Theoretical fundamentals of gas purification processes]. Moscow, Metallurgiya Publ., 1988. 256 p.

[12] Reist Parker C. Introduction to aerosols science. Macmillan Publ. Company Incorporated, 1984. 299 p. (Russ. ed.: Rayst P. Aerozoli. Vvedenie v teoriyu. Moscow, Mir Publ., 1987. 280 p.).

[13] Teverovskiy E.N., Dmitriev E.S. Perenos aerozol’nykh chastits turbulentnymi potokami [Aerosol particles transfer by turbulent flows]. Moscow, Energoatomizdat Publ., 1988. 160 p.

[14] Fuks N.A. Mekhanika aerozoley [Mechanics of aerosols]. Moscow, AN SSSR Publ., 1955. 363 p.

[15] Gasteva G.N., Bad’in V.I., Molokanov A.A. Radiatsionnaya meditsina. T. 2. Klinicheskaya toksikologiya khimicheskikh soedineniy urana pri khronicheskoy ekspozitsii [Radiation medicine. Vol. 2. Clinical toxicology of chemical compounds of uranium at chronic exposure]. Moscow, IzdAt Publ., 2001, pp. 369-389.